| 18.0.2954312706550833698643.3 |
x18 - 6x15 + 24x12 - 74x9 + 150x6 + 12x3 + 1 |
\( -\,3^{45} \) |
$He_3:C_2$ (as 18T21) |
Trivial
|
| 18.0.11727564985436483639043.1 |
x18 - 3x16 - 6x15 + 6x14 + 15x13 - 6x12 - 24x11 - 3x10 + 43x9 + 54x8 - 24x7 - 12x6 - 42x5 + 12x4 + 15x3 + 6x2 + 3x + 1 |
\( -\,3^{25}\cdot 7^{12} \) |
$He_3:C_2$ (as 18T21) |
$[3]$
|
| 18.0.12100864846032214829641728.2 |
x18 - 6x15 - 18x14 - 3x12 + 126x11 + 288x10 + 34x9 + 378x8 - 540x7 - 363x6 + 18x5 + 540x4 - 852x3 + 1224x2 - 828x + 193 |
\( -\,2^{12}\cdot 3^{45} \) |
$He_3:C_2$ (as 18T21) |
Trivial
|
| 18.18.70720374548224359605005470978048.1 |
x18 - 6x17 - 24x16 + 208x15 + 12x14 - 2394x13 + 3125x12 + 10464x11 - 24564x10 - 9916x9 + 63708x8 - 28836x7 - 53993x6 + 47538x5 + 8760x4 - 17236x3 + 1836x2 + 1794x - 377 |
\( 2^{12}\cdot 3^{24}\cdot 7^{8}\cdot 13^{9} \) |
$He_3:C_2$ (as 18T21) |
$[3]$
(GRH)
|
| 18.18.178698494132131643847952616411136.1 |
x18 - 9x17 - 9x16 + 264x15 - 288x14 - 2916x13 + 5598x12 + 14526x11 - 39159x10 - 27383x9 + 128403x8 - 17730x7 - 188268x6 + 110070x5 + 90900x4 - 76710x3 - 9855x2 + 13041x - 623 |
\( 2^{12}\cdot 3^{37}\cdot 7^{13} \) |
$He_3:C_2$ (as 18T21) |
Trivial
(GRH)
|
| 18.0.2954312706550833698643000000000000.1 |
x18 - 60x15 + 360x14 + 1401x12 - 14400x11 + 39600x10 - 22700x9 + 193320x8 - 864000x7 + 1154967x6 - 1699200x5 + 5724000x4 - 1375800x3 - 17377920x2 - 1368000x + 154736383 |
\( -\,2^{12}\cdot 3^{45}\cdot 5^{12} \) |
$He_3:C_2$ (as 18T21) |
$[3, 3, 3]$
(GRH)
|
| 18.0.13266257117930788904129800273932288.4 |
x18 - 48x15 + 1944x12 - 28944x9 + 409536x6 + 2099520x3 + 34012224 |
\( -\,2^{12}\cdot 3^{33}\cdot 17^{12} \) |
$He_3:C_2$ (as 18T21) |
$[3, 3, 9]$
(GRH)
|
| 18.0.50396986113842071567939653456703488.12 |
x18 - 60x15 + 1752x12 - 33120x9 + 265824x6 + 1073088x3 + 1259712 |
\( -\,2^{12}\cdot 3^{33}\cdot 19^{12} \) |
$He_3:C_2$ (as 18T21) |
$[3, 3, 9]$
(GRH)
|
| 18.0.149893238403862212943036837746306920448.5 |
x18 - 258x15 + 67464x12 + 235656x9 + 364176x6 + 1555200x3 + 2985984 |
\( -\,2^{12}\cdot 3^{33}\cdot 37^{12} \) |
$He_3:C_2$ (as 18T21) |
$[3, 3, 9]$
(GRH)
|