Learn more about

Further refine search

Results (displaying matches 1-50 of 1029) Next

Label Polynomial Discriminant Galois group Class group
18.0.105548084868928352751387.1 x18 - 4x15 + 27x12 + 42x9 + 125x6 - 11x3 + 1 \( -\,3^{27}\cdot 7^{12} \) $C_6 \times C_3$ (as 18T2) Trivial
18.0.1340851596668237962730583.1 x18 + 3x16 - x15 + 9x14 - 6x13 + 28x12 + 36x11 + 90x10 + 80x9 + 234x8 + 150x7 + 622x6 + 216x5 + 75x4 + 26x3 + 9x2 + 3x + 1 \( -\,3^{24}\cdot 7^{15} \) $C_6 \times C_3$ (as 18T2) $[7]$
18.18.36202993110042424993725741.1 x18 - 18x16 - x15 + 135x14 + 15x13 - 546x12 - 90x11 + 1287x10 + 276x9 - 1782x8 - 459x7 + 1385x6 + 405x5 - 534x4 - 170x3 + 72x2 + 24x + 1 \( 3^{27}\cdot 7^{15} \) $C_6 \times C_3$ (as 18T2) Trivial (GRH)
18.0.110609092182866440454328583.1 x18 - x17 + 5x16 - 10x15 + 31x14 - 76x13 + 210x12 + 366x11 + 550x10 + 704x9 + 1130x8 + 1136x7 + 2680x6 + 734x5 + 201x4 + 55x3 + 15x2 + 4x + 1 \( -\,7^{15}\cdot 13^{12} \) $C_6 \times C_3$ (as 18T2) $[13]$
18.0.177661819315004155453692747.1 x18 - 16x15 + 305x12 + 786x9 + 2385x6 + 49x3 + 1 \( -\,3^{27}\cdot 13^{12} \) $C_6 \times C_3$ (as 18T2) $[7]$
18.18.708478645847689707516501157.1 x18 - x17 - 27x16 + 22x15 + 269x14 - 180x13 - 1259x12 + 711x11 + 2914x10 - 1420x9 - 3300x8 + 1287x7 + 1831x6 - 522x5 - 466x4 + 89x3 + 45x2 - 6x - 1 \( 7^{12}\cdot 13^{15} \) $C_6 \times C_3$ (as 18T2) Trivial (GRH)
18.0.1024770265180753855691096064.1 x18 + 30x16 + 333x14 + 1712x12 + 4164x10 + 4500x8 + 2316x6 + 561x4 + 54x2 + 1 \( -\,2^{18}\cdot 3^{24}\cdot 7^{12} \) $C_6 \times C_3$ (as 18T2) $[2, 14]$
18.0.6347285018761982937208599123.3 x18 + 20x16 - 16x15 + 297x14 - 206x13 + 1810x12 - 984x11 + 7777x10 - 2850x9 + 15631x8 + 1270x7 + 19813x6 - 328x5 + 10076x4 - 592x3 + 3856x2 - 480x + 64 \( -\,3^{9}\cdot 7^{12}\cdot 13^{12} \) $C_6 \times C_3$ (as 18T2) $[6, 6]$ (GRH)
18.18.7635133454060210702501953125.1 x18 - 3x17 - 36x16 + 89x15 + 492x14 - 996x13 - 3347x12 + 5340x11 + 12252x10 - 14385x9 - 24138x8 + 18921x7 + 24296x6 - 11088x5 - 11091x4 + 2893x3 + 1902x2 - 330x - 71 \( 3^{24}\cdot 5^{9}\cdot 7^{12} \) $C_6 \times C_3$ (as 18T2) Trivial (GRH)
18.0.10507848719141112156676338823.1 x18 - x17 + 7x16 - 6x15 + 41x14 - 28x13 + 232x12 - 406x11 + 1602x10 - 2414x9 + 9184x8 - 12454x7 + 50660x6 - 61096x5 + 74137x4 - 86093x3 + 103243x2 - 100842x + 117649 \( -\,7^{15}\cdot 19^{12} \) $C_6 \times C_3$ (as 18T2) $[2, 26]$ (GRH)
18.18.14456408038335708501176406117.1 x18 - 33x16 - 4x15 + 405x14 + 84x13 - 2309x12 - 612x11 + 6234x10 + 1828x9 - 7416x8 - 2424x7 + 3492x6 + 1089x5 - 687x4 - 177x3 + 54x2 + 9x - 1 \( 3^{24}\cdot 13^{15} \) $C_6 \times C_3$ (as 18T2) Trivial (GRH)
18.0.16877848680315122776257224907.4 x18 - 2x15 + 199x12 + 1076x9 + 37339x6 + 66885x3 + 117649 \( -\,3^{27}\cdot 19^{12} \) $C_6 \times C_3$ (as 18T2) $[3, 3, 3]$ (GRH)
18.18.27668797159880354103659593728.1 x18 - 30x16 + 333x14 - 1788x12 + 5040x10 - 7668x8 + 6264x6 - 2619x4 + 486x2 - 27 \( 2^{18}\cdot 3^{27}\cdot 7^{12} \) $C_6 \times C_3$ (as 18T2) Trivial (GRH)
18.0.84535014172552012147112280064.1 x18 + 40x16 + 606x14 + 4498x12 + 17745x10 + 37370x8 + 40081x6 + 20600x4 + 4112x2 + 64 \( -\,2^{18}\cdot 7^{12}\cdot 13^{12} \) $C_6 \times C_3$ (as 18T2) $[3, 6, 6]$ (GRH)
18.0.206148603259625688967552734375.1 x18 - 6x17 + 21x16 - 38x15 + 72x14 - 72x13 + 82x12 + 540x11 - 123x10 - 880x9 + 17883x8 - 34212x7 + 79951x6 - 92796x5 + 178851x4 - 124326x3 + 112827x2 - 54930x + 114211 \( -\,3^{27}\cdot 5^{9}\cdot 7^{12} \) $C_6 \times C_3$ (as 18T2) $[2, 2, 74]$ (GRH)
18.0.210126339255361190328405271099.2 x18 - 3x17 - 5x16 - 5x15 + 91x14 - 141x13 + 296x12 - 206x11 - 380x10 + 741x9 - 6056x8 + 5713x7 + 28219x6 - 55511x5 + 37362x4 - 23297x3 + 22127x2 - 2534x + 3241 \( -\,7^{12}\cdot 19^{15} \) $C_6 \times C_3$ (as 18T2) $[3, 3, 3]$ (GRH)
18.0.243008175525757569678159896851.1 x18 - x17 + 12x16 - 17x15 - 4x14 - 76x13 - 154x12 - 82x11 + 1159x10 + 816x9 + 3265x8 + 3887x7 + 3898x6 + 8175x5 + 5605x4 + 2715x3 + 10718x2 + 4141x + 9619 \( -\,7^{15}\cdot 13^{15} \) $C_6 \times C_3$ (as 18T2) $[2, 2, 14]$ (GRH)
18.18.351496200956998572502045949952.1 x18 - 39x16 - 6x15 + 576x14 + 132x13 - 4060x12 - 792x11 + 14433x10 + 494x9 - 25785x8 + 5016x7 + 20201x6 - 8406x5 - 4209x4 + 2802x3 - 327x2 - 24x + 1 \( 2^{18}\cdot 3^{24}\cdot 7^{15} \) $C_6 \times C_3$ (as 18T2) Trivial (GRH)
18.0.390323017035064129531762965159.1 x18 + 6x16 - 4x15 - 63x14 - 72x13 - 73x12 - 27x11 + 1437x10 + 1854x9 + 2412x8 + 1515x7 - 1266x6 + 2025x5 + 2784x4 + 4789x3 + 8946x2 + 2232x + 6616 \( -\,3^{27}\cdot 13^{15} \) $C_6 \times C_3$ (as 18T2) $[52]$ (GRH)
18.0.524682375772545974113841184768.4 x18 - 12x16 - 8x15 + 117x14 + 96x13 + 246x12 + 438x11 + 2376x10 + 3532x9 + 21948x8 + 13782x7 + 114732x6 + 44268x5 + 331017x4 + 87920x3 + 531078x2 + 90444x + 386513 \( -\,2^{27}\cdot 3^{24}\cdot 7^{12} \) $C_6 \times C_3$ (as 18T2) $[18, 18]$ (GRH)
18.18.524682375772545974113841184768.1 x18 - 48x16 - 8x15 + 837x14 + 192x13 - 6966x12 - 1866x11 + 30984x10 + 9044x9 - 76548x8 - 22602x7 + 104332x6 + 27684x5 - 75591x4 - 14864x3 + 26814x2 + 2700x - 3527 \( 2^{27}\cdot 3^{24}\cdot 7^{12} \) $C_6 \times C_3$ (as 18T2) Trivial (GRH)
18.0.602991213815902363206590020563.2 x18 + 26x16 - 28x15 + 495x14 - 518x13 + 4312x12 - 5250x11 + 27163x10 - 25326x9 + 69607x8 - 33026x7 + 104749x6 - 50344x5 + 66332x4 - 14224x3 + 19600x2 - 4704x + 3136 \( -\,3^{9}\cdot 7^{12}\cdot 19^{12} \) $C_6 \times C_3$ (as 18T2) $[6, 18]$ (GRH)
18.18.629834936354696841143908203125.1 x18 - 3x17 - 44x16 + 119x15 + 709x14 - 1665x13 - 5490x12 + 10595x11 + 22609x10 - 32862x9 - 51161x8 + 47600x7 + 61756x6 - 27278x5 - 33166x4 + 3653x3 + 5802x2 + 855x - 1 \( 5^{9}\cdot 7^{12}\cdot 13^{12} \) $C_6 \times C_3$ (as 18T2) Trivial (GRH)
18.0.1724925183796757382490845609984.3 x18 + 45x16 + 738x14 + 5996x12 + 26937x10 + 69201x8 + 99645x6 + 74337x4 + 24555x2 + 2809 \( -\,2^{18}\cdot 3^{24}\cdot 13^{12} \) $C_6 \times C_3$ (as 18T2) $[18, 18]$ (GRH)
18.18.2177118761435360147462549499189.1 x18 - 3x17 - 41x16 + 97x15 + 670x14 - 1198x13 - 5461x12 + 7639x11 + 23838x10 - 28087x9 - 55814x8 + 60622x7 + 64848x6 - 71560x5 - 28872x4 + 37573x3 + 369x2 - 5041x + 421 \( 3^{9}\cdot 7^{15}\cdot 13^{12} \) $C_6 \times C_3$ (as 18T2) Trivial (GRH)
18.0.2618850774742652270958169921875.4 x18 - 3x17 + 9x16 - 19x15 + 117x14 - 405x13 + 1224x12 - 2964x11 + 8802x10 - 23243x9 + 65484x8 - 120219x7 + 236523x6 - 297333x5 + 474168x4 - 443393x3 + 726267x2 - 729036x + 1100051 \( -\,3^{24}\cdot 5^{9}\cdot 7^{15} \) $C_6 \times C_3$ (as 18T2) $[2, 18, 18]$ (GRH)
18.0.3739477515129074045367351773623.1 x18 - x17 + 11x16 - 13x15 + 115x14 - 157x13 + 1203x12 - 270x11 + 11044x10 - 4120x9 + 112400x8 - 65248x7 + 1156288x6 - 909568x5 + 715776x4 - 561152x3 + 442368x2 - 327680x + 262144 \( -\,7^{15}\cdot 31^{12} \) $C_6 \times C_3$ (as 18T2) $[259]$ (GRH)
18.0.4287598670306719523049937245819.1 x18 - 3x17 - 9x16 + 53x15 - 138x13 + 307x12 - 975x11 - 474x10 + 1335x9 - 3918x8 + 18246x7 + 44148x6 - 5832x5 - 17880x4 + 21719x3 + 16641x2 - 15837x + 11863 \( -\,3^{24}\cdot 19^{15} \) $C_6 \times C_3$ (as 18T2) $[2, 14]$ (GRH)
18.0.6006399343075824213089699938107.1 x18 - 7x15 + 1097x12 + 6312x9 + 1101888x6 - 536576x3 + 262144 \( -\,3^{27}\cdot 31^{12} \) $C_6 \times C_3$ (as 18T2) $[91]$ (GRH)
18.0.8030814853150226545771901353984.1 x18 + 52x16 + 1038x14 + 10198x12 + 52581x10 + 141146x8 + 187993x6 + 116984x4 + 32144x2 + 3136 \( -\,2^{18}\cdot 7^{12}\cdot 19^{12} \) $C_6 \times C_3$ (as 18T2) $[14, 14]$ (GRH)
18.0.9217661592820801741280239766571.4 x18 - 9x17 + 33x16 - 52x15 + 84x14 - 540x13 + 3178x12 - 11892x11 + 36576x10 - 94398x9 + 242916x8 - 534324x7 + 1183880x6 - 2079090x5 + 3606933x4 - 4490689x3 + 5618562x2 - 3981963x + 3180563 \( -\,3^{24}\cdot 7^{12}\cdot 11^{9} \) $C_6 \times C_3$ (as 18T2) $[36, 36]$ (GRH)
18.0.9490397425838961457555240648704.1 x18 + 42x16 + 693x14 + 5880x12 + 28224x10 + 79380x8 + 130536x6 + 120393x4 + 55566x2 + 9261 \( -\,2^{18}\cdot 3^{27}\cdot 7^{15} \) $C_6 \times C_3$ (as 18T2) $[2, 2, 2, 182]$ (GRH)
18.18.12851694105541388560018283203125.1 x18 - 6x17 - 36x16 + 226x15 + 483x14 - 3231x13 - 3224x12 + 22752x11 + 12312x10 - 84569x9 - 30768x8 + 164055x7 + 53034x6 - 150630x5 - 50556x4 + 48055x3 + 13995x2 - 2403x - 181 \( 3^{24}\cdot 5^{9}\cdot 13^{12} \) $C_6 \times C_3$ (as 18T2) Trivial (GRH)
18.0.13944985186220076513047292273231.1 x18 - 3x17 + 13x16 - 14x15 + 49x14 - 22x13 - 184x12 - 344x11 + 2538x10 - 15190x9 + 54562x8 - 33440x7 + 69570x6 - 112288x5 + 224883x4 - 115871x3 + 162369x2 - 11584x + 215851 \( -\,3^{9}\cdot 7^{12}\cdot 13^{15} \) $C_6 \times C_3$ (as 18T2) $[2, 2, 2, 2, 76]$ (GRH)
18.0.14166424145858741301073711988736.4 x18 - 6x17 + 39x16 - 146x15 + 609x14 - 1806x13 + 5568x12 - 12930x11 + 30840x10 - 58068x9 + 121791x8 - 196452x7 + 321467x6 - 380358x5 + 651183x4 - 775582x3 + 1625814x2 - 1190916x + 1075033 \( -\,2^{27}\cdot 3^{27}\cdot 7^{12} \) $C_6 \times C_3$ (as 18T2) $[2, 18, 54]$ (GRH)
18.18.14166424145858741301073711988736.1 x18 - 6x17 - 33x16 + 238x15 + 321x14 - 3486x13 - 360x12 + 24222x11 - 10056x10 - 84708x9 + 53535x8 + 145404x7 - 96853x6 - 115686x5 + 64119x4 + 38114x3 - 11610x2 - 4596x - 71 \( 2^{27}\cdot 3^{27}\cdot 7^{12} \) $C_6 \times C_3$ (as 18T2) Trivial (GRH)
18.18.28995509861185340166459512061952.1 x18 - 6x17 - 30x16 + 206x15 + 318x14 - 2710x13 - 1134x12 + 17302x11 - 3335x10 - 56382x9 + 35668x8 + 85538x7 - 89615x6 - 36518x5 + 75010x4 - 18108x3 - 11472x2 + 5904x - 664 \( 2^{18}\cdot 7^{15}\cdot 13^{12} \) $C_6 \times C_3$ (as 18T2) Trivial (GRH)
18.0.31252969564728218452784752298983.3 x18 - x17 + 13x16 - 36x15 + 203x14 - 778x13 + 3610x12 + 13802x11 + 38076x10 + 87838x9 + 217252x8 + 417968x7 + 1222838x6 + 1403006x5 + 1597321x4 + 1787533x3 + 1947253x2 + 1932612x + 1771561 \( -\,7^{15}\cdot 37^{12} \) $C_6 \times C_3$ (as 18T2) $[9, 63]$ (GRH)
18.18.41454985178292648293852083940013.1 x18 - 9x17 - 21x16 + 364x15 - 228x14 - 5196x13 + 8330x12 + 32592x11 - 68550x10 - 100088x9 + 245598x8 + 159384x7 - 413984x6 - 153138x5 + 299925x4 + 107821x3 - 61668x2 - 26043x - 953 \( 3^{24}\cdot 7^{12}\cdot 13^{9} \) $C_6 \times C_3$ (as 18T2) Trivial (GRH)
18.0.43281927256346630219321487392768.1 x18 - 6x17 + 21x16 - 66x15 + 297x14 - 742x13 + 1346x12 - 4058x11 + 9676x10 - 2428x9 + 22175x8 - 86316x7 - 133405x6 - 23318x5 + 742493x4 + 1890250x3 + 3195846x2 + 1805644x + 966337 \( -\,2^{27}\cdot 7^{12}\cdot 13^{12} \) $C_6 \times C_3$ (as 18T2) $[4, 268]$ (GRH)
18.18.43281927256346630219321487392768.1 x18 - 6x17 - 39x16 + 254x15 + 537x14 - 4062x13 - 2802x12 + 31254x11 - 740x10 - 121028x9 + 55551x8 + 220500x7 - 168253x6 - 144998x5 + 152385x4 + 11322x3 - 40450x2 + 10964x - 727 \( 2^{27}\cdot 7^{12}\cdot 13^{12} \) $C_6 \times C_3$ (as 18T2) Trivial (GRH)
18.18.46572979962512449327252831469568.1 x18 - 6x17 - 27x16 + 190x15 + 252x14 - 2292x13 - 796x12 + 13428x11 - 1767x10 - 40488x9 + 17475x8 + 60252x7 - 39087x6 - 37440x5 + 32055x4 + 5474x3 - 8583x2 + 1170x + 181 \( 2^{18}\cdot 3^{27}\cdot 13^{12} \) $C_6 \times C_3$ (as 18T2) Trivial (GRH)
18.0.50198942259523899975028947826347.4 x18 - 70x15 + 5869x12 + 70492x9 + 845791x6 + 1289739x3 + 1771561 \( -\,3^{27}\cdot 37^{12} \) $C_6 \times C_3$ (as 18T2) $[3, 3, 21]$ (GRH)
18.18.59834233322368760002940158203125.1 x18 - 3x17 - 56x16 + 195x15 + 1057x14 - 4277x13 - 8360x12 + 43035x11 + 22847x10 - 215160x9 + 33211x8 + 534308x7 - 267164x6 - 612584x5 + 400750x4 + 264347x3 - 169876x2 - 34901x + 21211 \( 5^{9}\cdot 7^{12}\cdot 19^{12} \) $C_6 \times C_3$ (as 18T2) Trivial (GRH)
18.18.70708970918051611315870587890625.1 x18 - 60x16 - x15 + 1458x14 + 57x13 - 18690x12 - 1035x11 + 137472x10 + 8571x9 - 588942x8 - 37629x7 + 1414748x6 + 97803x5 - 1705209x4 - 152903x3 + 775098x2 + 83436x - 2456 \( 3^{27}\cdot 5^{9}\cdot 7^{15} \) $C_6 \times C_3$ (as 18T2) $[2]$ (GRH)
18.18.72073334364588888282643007986957.1 x18 - x17 - 49x16 + 50x15 + 860x14 - 903x13 - 6901x12 + 7833x11 + 27250x10 - 34628x9 - 51037x8 + 77678x7 + 32656x6 - 79772x5 + 14070x4 + 24745x3 - 14301x2 + 2835x - 189 \( 7^{15}\cdot 19^{15} \) $C_6 \times C_3$ (as 18T2) Trivial (GRH)
18.18.113290500653811459555808941573877.1 x18 - 3x17 - 50x16 + 169x15 + 874x14 - 3458x13 - 5979x12 + 31684x11 + 8426x10 - 131047x9 + 53306x8 + 228127x7 - 156694x6 - 157898x5 + 123595x4 + 40177x3 - 33502x2 - 1654x + 2053 \( 13^{15}\cdot 19^{12} \) $C_6 \times C_3$ (as 18T2) Trivial (GRH)
18.18.115765164098281427122348305637113.1 x18 - 48x16 - 29x15 + 846x14 + 951x13 - 6620x12 - 10485x11 + 22968x10 + 50441x9 - 25074x8 - 108969x7 - 30650x6 + 88605x5 + 66801x4 - 5847x3 - 16344x2 - 1932x + 856 \( 3^{27}\cdot 19^{15} \) $C_6 \times C_3$ (as 18T2) Trivial (GRH)
18.0.163867657942686205372561998741504.1 x18 + 57x16 + 1254x14 + 13428x12 + 72789x10 + 189069x8 + 211985x6 + 107217x4 + 22743x2 + 1369 \( -\,2^{18}\cdot 3^{24}\cdot 19^{12} \) $C_6 \times C_3$ (as 18T2) $[4, 148]$ (GRH)
18.0.179966054889983269121047526375424.4 x18 + 24x16 - 6x15 + 387x14 + 6x13 + 3941x12 - 36x11 + 28167x10 + 5912x9 + 163782x8 + 50502x7 + 623048x6 + 233514x5 + 2503317x4 + 2370846x3 + 8823831x2 + 5384334x + 8256151 \( -\,2^{27}\cdot 3^{24}\cdot 7^{15} \) $C_6 \times C_3$ (as 18T2) $[2, 18, 252]$ (GRH)
Next

Download all search results for