| 18.0.236549479975054182819.1 |
x18 - 2x17 + 3x16 - 4x15 + 6x14 - 6x13 + 4x12 - 4x9 + 3x8 - 3x7 + 6x6 + 3x5 + 4x4 + 4x3 + 3x2 + 1 |
\( -\,3^{9}\cdot 23^{6}\cdot 433^{3} \) |
$S_3\times S_3\wr C_2$ (as 18T150) |
Trivial
|
| 18.4.734206470812912109375.1 |
x18 + 3x16 - 3x14 - 3x13 + 6x12 - 21x11 + 21x10 + 2x9 - 27x8 + 48x7 - 36x6 + 6x5 + 15x4 - 21x3 + 15x2 - 6x + 1 |
\( -\,3^{24}\cdot 5^{9}\cdot 11^{3} \) |
$S_3\times S_3\wr C_2$ (as 18T150) |
Trivial
|
| 18.4.3703509525672326171875.1 |
x18 - 3x17 + 2x16 - x15 - 4x14 + 10x13 - 5x12 - 7x11 - 15x10 + 21x9 + 8x8 - 19x7 - 12x6 + 11x5 + 11x4 - 4x3 - 3x2 + 7x + 1 |
\( -\,5^{9}\cdot 31^{7}\cdot 41^{3} \) |
$S_3\times S_3\wr C_2$ (as 18T150) |
Trivial
|
| 18.2.4047139580139001953125.1 |
x18 - x17 + x16 - 2x15 + 7x14 - 2x13 + 3x12 - 7x11 + 10x10 + 2x9 + 6x8 - 3x7 - 7x6 + 4x5 - 2x4 + 5x3 - 3x2 - 1 |
\( 5^{9}\cdot 23^{6}\cdot 241^{3} \) |
$S_3\times S_3\wr C_2$ (as 18T150) |
Trivial
|
| 18.0.9476762676643233792000.1 |
x18 - 6x17 + 18x16 - 30x15 + 27x14 - 24x13 + 126x12 - 510x11 + 1257x10 - 2158x9 + 2772x8 - 2754x7 + 2145x6 - 1308x5 + 618x4 - 222x3 + 60x2 - 12x + 2 |
\( -\,2^{28}\cdot 3^{24}\cdot 5^{3} \) |
$S_3\times S_3\wr C_2$ (as 18T150) |
Trivial
|
| 18.2.13453464775849822265625.1 |
x18 - 3x17 + 12x16 - 15x15 + 36x14 - 24x13 + 75x12 - 27x11 + 69x10 - 44x9 + 45x8 - 27x7 + 15x6 - 12x5 + 9x4 + 3x3 + 9x2 - 1 |
\( 3^{24}\cdot 5^{9}\cdot 29^{3} \) |
$S_3\times S_3\wr C_2$ (as 18T150) |
Trivial
|
| 18.0.5975336823211392744554496.1 |
x18 - 3x17 + 6x16 - 3x15 - 18x14 + 24x13 + 63x12 - 27x11 - 54x10 - 47x9 - 99x8 + 9x7 + 171x6 + 222x5 + 330x4 + 207x3 + 144x2 + 42x + 14 |
\( -\,2^{19}\cdot 3^{24}\cdot 7^{9} \) |
$S_3\times S_3\wr C_2$ (as 18T150) |
Trivial
(GRH)
|
| 18.6.10927177744449669001953125.1 |
x18 - 3x17 + 2x16 - 13x15 + 24x14 + 8x13 + 61x12 - 46x11 - 228x10 - 49x9 - 30x8 + 473x7 + 722x6 - 528x5 - 887x4 + 103x3 + 306x2 + 56x - 31 |
\( 5^{9}\cdot 59^{7}\cdot 131^{3} \) |
$S_3\times S_3\wr C_2$ (as 18T150) |
Trivial
|
| 18.6.11919189767769141150744576.1 |
x18 - 6x16 - 6x15 + 24x14 + 36x13 - 33x12 - 84x11 - 114x10 + 280x9 + 408x8 - 804x7 - 597x6 + 1044x5 + 354x4 - 1002x3 - 594x2 + 24x + 41 |
\( 2^{33}\cdot 3^{24}\cdot 17^{3} \) |
$S_3\times S_3\wr C_2$ (as 18T150) |
Trivial
(GRH)
|
| 18.0.96873331012983000000000000.1 |
x18 - 6x17 + 15x16 - 15x15 + 18x14 - 72x13 + 147x12 - 399x11 + 849x10 - 901x9 + 822x8 - 597x7 - 6x6 - 387x5 + 2007x4 - 2679x3 + 1716x2 - 564x + 79 |
\( -\,2^{12}\cdot 3^{24}\cdot 5^{12}\cdot 7^{3} \) |
$S_3\times S_3\wr C_2$ (as 18T150) |
Trivial
(GRH)
|
| 18.12.1089427651175529674612670464.1 |
x18 - 4x17 - 16x16 + 72x15 + 60x14 - 464x13 + 30x12 + 1376x11 - 344x10 - 2424x9 + 736x8 + 2400x7 - 904x6 - 1168x5 + 600x4 + 224x3 - 160x2 + 8 |
\( -\,2^{33}\cdot 37^{6}\cdot 367^{3} \) |
$S_3\times S_3\wr C_2$ (as 18T150) |
Trivial
(GRH)
|
| 18.12.1997957520642764463811854336.1 |
x18 - 12x16 - 12x15 - 12x14 + 24x13 + 144x12 - 96x11 + 72x10 + 320x9 - 864x8 - 48x7 + 804x6 - 384x5 + 144x3 - 96x2 + 8 |
\( -\,2^{33}\cdot 3^{24}\cdot 7^{7} \) |
$S_3\times S_3\wr C_2$ (as 18T150) |
Trivial
(GRH)
|
| 18.6.7444172137965405517922697216.1 |
x18 - 6x16 - 12x15 + 15x14 + 56x12 + 180x11 - 126x10 - 272x9 - 708x8 - 24x7 + 1956x6 + 384x5 - 1824x4 - 1344x3 + 1152x2 + 2304x + 768 |
\( 2^{26}\cdot 3^{21}\cdot 13^{9} \) |
$S_3\times S_3\wr C_2$ (as 18T150) |
Trivial
(GRH)
|
| 18.18.207921161448365080828304162816.1 |
x18 - 6x17 - 17x16 + 142x15 + 63x14 - 1270x13 + 388x12 + 5398x11 - 3598x10 - 11248x9 + 10173x8 + 10424x7 - 12147x6 - 2766x5 + 5745x4 - 754x3 - 608x2 + 80x + 25 |
\( 2^{33}\cdot 37^{6}\cdot 2113^{3} \) |
$S_3\times S_3\wr C_2$ (as 18T150) |
Trivial
(GRH)
|
| 18.6.913386706821601472305592008704.1 |
x18 - 27x16 - 6x15 + 204x14 - 72x13 - 834x12 + 1212x11 + 2619x10 - 4672x9 - 3573x8 + 8226x7 - 798x6 - 5520x5 + 14976x4 - 11364x3 - 2208x2 + 4392x - 956 |
\( 2^{34}\cdot 3^{25}\cdot 13^{7} \) |
$S_3\times S_3\wr C_2$ (as 18T150) |
Trivial
(GRH)
|
| 18.18.32897258484594691238896111328125.1 |
x18 - 43x16 - 6x15 + 693x14 + 185x13 - 5330x12 - 1876x11 + 20823x10 + 7986x9 - 40733x8 - 14559x7 + 36698x6 + 11414x5 - 11235x4 - 4162x3 + 95x2 + 39x + 1 |
\( 5^{9}\cdot 257^{6}\cdot 3881^{3} \) |
$S_3\times S_3\wr C_2$ (as 18T150) |
Trivial
(GRH)
|