| 18.0.6222062031041447163.1 |
x18 - 4x15 + 6x12 - 5x9 + 6x6 - 4x3 + 1 |
\( -\,3^{21}\cdot 29^{6} \) |
$C_2\times C_3\wr S_3$ (as 18T119) |
Trivial
|
| 18.0.55998558279373024467.1 |
x18 - 2x15 + 5x9 - 2x3 + 1 |
\( -\,3^{23}\cdot 29^{6} \) |
$C_2\times C_3\wr S_3$ (as 18T119) |
Trivial
|
| 18.6.5620365587965550179941.1 |
x18 - 6x16 - x15 - 5x14 + 22x13 + 21x12 - 55x11 + 53x10 - 51x9 - 79x8 + 251x7 - 177x6 - 83x5 + 232x4 - 182x3 + 73x2 - 14x + 1 |
\( 3^{18}\cdot 29^{9} \) |
$C_2\times C_3\wr S_3$ (as 18T119) |
Trivial
|
| 18.6.34930066530813283203125.1 |
x18 - x17 - 10x16 + 13x15 + 56x14 - 47x13 - 186x12 - 15x11 + 284x10 + 189x9 - 161x8 - 200x7 + 23x6 + 95x5 + 5x4 - 20x3 + 4x2 + 2x - 1 |
\( 5^{9}\cdot 31^{6}\cdot 67^{4} \) |
$C_2\times C_3\wr S_3$ (as 18T119) |
Trivial
|
| 18.0.3340021712790174678422667.1 |
x18 - 3x17 + 5x16 + 7x15 - 32x14 + 46x13 + 23x12 - 51x11 - 90x10 + 82x9 + 707x8 - 1449x7 + 827x6 - 54x5 + 1381x4 - 3443x3 + 3328x2 - 1519x + 283 |
\( -\,3^{9}\cdot 7^{4}\cdot 643^{6} \) |
$C_2\times C_3\wr S_3$ (as 18T119) |
$[2]$
|
| 18.0.5319993268633121382752523.1 |
x18 - 4x17 + 19x16 - 30x15 + 93x14 - 96x13 + 327x12 - 219x11 + 608x10 - 393x9 + 826x8 - 468x7 + 618x6 - 393x5 + 330x4 - 138x3 + 49x2 - 8x + 1 |
\( -\,3^{9}\cdot 37^{4}\cdot 229^{6} \) |
$C_2\times C_3\wr S_3$ (as 18T119) |
$[6]$
|
| 18.18.36276858684714282250737287168.1 |
x18 - 4x17 - 32x16 + 122x15 + 389x14 - 1430x13 - 2193x12 + 8036x11 + 5434x10 - 21870x9 - 3546x8 + 25156x7 - 3174x6 - 7668x5 + 708x4 + 588x3 + x2 - 14x - 1 |
\( 2^{27}\cdot 37^{4}\cdot 229^{6} \) |
$C_2\times C_3\wr S_3$ (as 18T119) |
Trivial
(GRH)
|
| 18.18.875566651877667550900431618048.1 |
x18 - 30x16 + 343x14 - 1889x12 + 5371x10 - 8365x8 + 7204x6 - 3237x4 + 630x2 - 27 |
\( 2^{18}\cdot 3^{9}\cdot 7^{4}\cdot 643^{6} \) |
$C_2\times C_3\wr S_3$ (as 18T119) |
Trivial
(GRH)
|