Learn more about

Further refine search

Results (displaying all 35 matches)

Label Polynomial Discriminant Galois group Class group
16.8.187591757103747287810048.4 x16 - 34x12 + 255x8 - 306x4 + 17 \( 2^{16}\cdot 17^{15} \) $(C_2\times OD_{16}).D_4$ (as 16T591) Trivial (GRH)
16.8.187591757103747287810048.5 x16 - 17x12 + 68x8 - 85x4 + 17 \( 2^{16}\cdot 17^{15} \) $(C_2\times OD_{16}).D_4$ (as 16T591) Trivial (GRH)
16.0.604462909807314587353088.8 x16 + 16x12 + 40x8 + 32x4 + 8 \( 2^{79} \) $(C_2\times OD_{16}).D_4$ (as 16T591) Trivial (GRH)
16.0.604462909807314587353088.9 x16 + 8x12 + 20x8 + 16x4 + 2 \( 2^{79} \) $(C_2\times OD_{16}).D_4$ (as 16T591) Trivial (GRH)
16.8.57681033264163530732453953.1 x16 - 5x15 + 8x14 - 23x13 + 30x12 + 411x11 - 2123x10 + 4070x9 + 900x8 - 21262x7 + 49921x6 - 61449x5 + 22291x4 + 63033x3 - 131072x2 + 138577x - 70141 \( 17^{15}\cdot 67^{4} \) $(C_2\times OD_{16}).D_4$ (as 16T591) $[2]$ (GRH)
16.8.57681033264163530732453953.3 x16 - 3x15 + 9x14 - 44x13 - 4x12 - 56x11 - 104x10 - 198x9 - 630x8 + 2723x7 + 1759x6 + 12403x5 + 28054x4 - 29014x3 - 73336x2 - 30742x - 3637 \( 17^{15}\cdot 67^{4} \) $(C_2\times OD_{16}).D_4$ (as 16T591) $[2]$ (GRH)
16.0.18843687673244176811423009101961.1 x16 - 6x15 - 19x14 + 187x13 - 365x12 - 266x11 + 4944x10 - 21450x9 + 63519x8 - 147125x7 + 212632x6 - 312848x5 + 514868x4 - 9473x3 - 26592x2 - 1939389x + 1848071 \( 41^{15}\cdot 59^{4} \) $(C_2\times OD_{16}).D_4$ (as 16T591) Trivial (GRH)
16.0.18843687673244176811423009101961.2 x16 - 5x15 + 13x14 - 48x13 + 141x12 - 198x11 + 2904x10 - 11277x9 + 46307x8 - 168474x7 + 486411x6 - 1023430x5 + 3489306x4 - 3327225x3 + 15334849x2 - 5993851x + 29720377 \( 41^{15}\cdot 59^{4} \) $(C_2\times OD_{16}).D_4$ (as 16T591) Trivial (GRH)
16.12.21113617530364765644381463052288.1 x16 - 136x14 + 6698x12 - 129421x10 + 65586x8 + 28061526x6 - 273775854x4 + 464408975x2 + 1913364977 \( 2^{16}\cdot 17^{15}\cdot 103^{4} \) $(C_2\times OD_{16}).D_4$ (as 16T591) $[2, 2]$ (GRH)
16.4.21113617530364765644381463052288.1 x16 + 153x14 + 7191x12 + 137020x10 + 662847x8 - 12151940x6 - 156546404x4 - 297221744x2 + 1913364977 \( 2^{16}\cdot 17^{15}\cdot 103^{4} \) $(C_2\times OD_{16}).D_4$ (as 16T591) $[2, 2, 2, 2]$ (GRH)
16.12.21113617530364765644381463052288.2 x16 - 119x14 + 2516x12 + 65892x10 - 1622378x8 - 3153551x6 + 214259364x4 - 1226039694x2 + 1913364977 \( 2^{16}\cdot 17^{15}\cdot 103^{4} \) $(C_2\times OD_{16}).D_4$ (as 16T591) $[2]$ (GRH)
16.4.21113617530364765644381463052288.2 x16 - 4012x12 - 67660x10 + 3501218x8 + 107910628x6 + 859742751x4 + 2452079388x2 + 1913364977 \( 2^{16}\cdot 17^{15}\cdot 103^{4} \) $(C_2\times OD_{16}).D_4$ (as 16T591) $[2, 2, 2, 2]$ (GRH)
16.0.73802355019427518458620621498921.1 x16 - 4x15 + 69x14 - 183x13 + 1576x12 - 2725x11 + 15792x10 - 43934x9 + 102969x8 - 201478x7 + 571184x6 - 816623x5 + 559692x4 - 158935x3 + 19651x2 - 14170x + 5381 \( 41^{15}\cdot 83^{4} \) $(C_2\times OD_{16}).D_4$ (as 16T591) Trivial (GRH)
16.0.73802355019427518458620621498921.2 x16 - 2x15 - 34x14 + 13x13 + 365x12 + 567x11 + 7063x10 + 25891x9 + 16943x8 + 77252x7 + 244921x6 + 47655x5 + 306321x4 + 453939x3 - 155647x2 + 191982x + 422911 \( 41^{15}\cdot 83^{4} \) $(C_2\times OD_{16}).D_4$ (as 16T591) Trivial (GRH)
16.0.1162337480711184271576898233831313.7 x16 - 2x15 + 4x14 - 42x13 + 220x12 - 661x11 + 217x10 + 1555x9 + 46394x8 + 12272x7 + 262416x6 + 167323x5 + 1006059x4 + 255478x3 + 2190191x2 + 762645x + 2941783 \( 17^{15}\cdot 67^{8} \) $(C_2\times OD_{16}).D_4$ (as 16T591) $[2, 4, 12, 24]$ (GRH)
16.0.1162337480711184271576898233831313.10 x16 - 6x15 + 36x14 - 97x13 + 582x12 - 925x11 + 6315x10 - 10231x9 + 70260x8 - 106975x7 + 522782x6 - 741834x5 + 2823832x4 - 3468316x3 + 8795299x2 - 6347021x + 9782821 \( 17^{15}\cdot 67^{8} \) $(C_2\times OD_{16}).D_4$ (as 16T591) $[2, 4, 12, 24]$ (GRH)
16.8.1331559141233168225818951099338453248.3 x16 - 3x15 + 111x14 + 58x13 - 24059x12 + 119471x11 - 2563925x10 + 3543996x9 + 85092020x8 - 633327585x7 + 9801720863x6 - 14293079195x5 - 165662813949x4 + 1046870527544x3 - 9010729094910x2 + 2296056514362x + 105165028996897 \( 2^{8}\cdot 17^{15}\cdot 6529^{4} \) $(C_2\times OD_{16}).D_4$ (as 16T591) $[2, 2, 2]$ (GRH)
16.0.3508724832059361738820170787833596729.1 x16 - 5x15 - 30x14 + 155x13 + 1382x12 - 11049x11 - 6878x10 + 160413x9 + 555525x8 - 5666394x7 + 6522992x6 + 23232976x5 + 155453472x4 - 1414547264x3 + 4169879872x2 - 5388767872x + 4052037632 \( 67^{4}\cdot 89^{15} \) $(C_2\times OD_{16}).D_4$ (as 16T591) $[113]$ (GRH)
16.0.3508724832059361738820170787833596729.2 x16 - 7x15 - 41x14 + 169x13 + 754x12 - 9042x11 + 21231x10 + 456417x9 - 626929x8 - 265833x7 + 14729992x6 + 16905736x5 + 247420336x4 - 241209680x3 + 1308458752x2 + 170454528x + 7902260224 \( 67^{4}\cdot 89^{15} \) $(C_2\times OD_{16}).D_4$ (as 16T591) $[113]$ (GRH)
16.12.8767895277848913089642817986417897713.1 x16 - 4x15 - 138x14 + 161x13 + 7902x12 + 15299x11 - 230205x10 - 1118637x9 + 3091178x8 + 24361457x7 + 6505217x6 - 141618630x5 - 885218873x4 - 1274011149x3 + 12277163359x2 + 12256345154x - 55934785129 \( 61^{4}\cdot 97^{15} \) $(C_2\times OD_{16}).D_4$ (as 16T591) $[2]$ (GRH)
16.4.8767895277848913089642817986417897713.3 x16 - 3x15 + 80x14 - 652x13 + 1919x12 - 13362x11 + 3799x10 + 330544x9 - 2353771x8 + 5701089x7 - 28706604x6 - 76994271x5 - 116028954x4 - 181534839x3 - 1302349077x2 + 666267339x + 125218271 \( 61^{4}\cdot 97^{15} \) $(C_2\times OD_{16}).D_4$ (as 16T591) $[2, 4]$ (GRH)
16.8.228335766107949731571841524994747244921.1 x16 - 6x15 - 19x14 + 146x13 - 1226x12 + 4777x11 - 15679x10 + 19837x9 + 486106x8 - 3318762x7 + 13506349x6 - 36196089x5 + 56092254x4 - 43863073x3 + 10625946x2 + 4815730x - 1985183 \( 41^{15}\cdot 59^{8} \) $(C_2\times OD_{16}).D_4$ (as 16T591) Trivial (GRH)
16.8.228335766107949731571841524994747244921.2 x16 - 4x15 - 95x14 + 186x13 + 1453x12 - 1618x11 - 10858x10 - 10191x9 + 115392x8 + 37183x7 - 308471x6 - 573657x5 - 180276x4 + 4204490x3 - 1512478x2 - 7613151x + 6522823 \( 41^{15}\cdot 59^{8} \) $(C_2\times OD_{16}).D_4$ (as 16T591) Trivial (GRH)
16.8.2112231025384252423772630322104776589312.1 x16 - 391x14 - 250427x12 + 116010414x10 - 1968018753x8 - 2533040427360x6 + 74428132138742x4 + 10822866203631300x2 + 191415273175747673 \( 2^{16}\cdot 13^{2}\cdot 17^{15}\cdot 2857^{4} \) $(C_2\times OD_{16}).D_4$ (as 16T591) $[2, 2, 2]$ (GRH)
16.8.2112231025384252423772630322104776589312.2 x16 - 1139x14 + 333982x12 + 20490185x10 - 14600815653x8 - 306906491051x6 + 160261082893754x4 + 10786789982952529x2 + 191415273175747673 \( 2^{16}\cdot 13^{2}\cdot 17^{15}\cdot 2857^{4} \) $(C_2\times OD_{16}).D_4$ (as 16T591) $[2, 2, 2]$ (GRH)
16.8.3502535855067952407242642672315293971641.1 x16 - 4x15 - 95x14 + 104x13 + 305x12 - 8752x11 + 3656x10 + 13097x9 - 38030x8 - 90245x7 + 526043x6 + 747363x5 - 510408x4 - 2183884x3 - 3919178x2 + 8942321x - 3392863 \( 41^{15}\cdot 83^{8} \) $(C_2\times OD_{16}).D_4$ (as 16T591) Trivial (GRH)
16.8.3502535855067952407242642672315293971641.2 x16 - 8x15 + 112x14 - 644x13 + 2912x12 - 9464x11 - 15460x10 + 149658x9 - 632204x8 + 1551360x7 + 1824938x6 - 10197714x5 + 10611616x4 - 2755458x3 - 1021420x2 + 491775x - 8881 \( 41^{15}\cdot 83^{8} \) $(C_2\times OD_{16}).D_4$ (as 16T591) Trivial (GRH)
16.0.683567948564897299391469349182811817443328.1 x16 + 4199x14 + 5886131x12 + 3978693634x10 + 1482245714409x8 + 318824584999742x6 + 39051900730883446x4 + 2486877913489246478x2 + 61946512496156595137 \( 2^{16}\cdot 17^{15}\cdot 43691^{4} \) $(C_2\times OD_{16}).D_4$ (as 16T591) $[2, 2, 2, 2, 2, 1058994498]$ (GRH)
16.0.683567948564897299391469349182811817443328.2 x16 + 4063x14 + 6007715x12 + 4216341258x10 + 1588534344529x8 + 337055877573450x6 + 40036280260158564x4 + 2475535254818828022x2 + 61946512496156595137 \( 2^{16}\cdot 17^{15}\cdot 43691^{4} \) $(C_2\times OD_{16}).D_4$ (as 16T591) $[2, 2, 2, 2, 2, 1068746342]$ (GRH)
16.8.70704738646532877581735658786300135551283209.1 x16 - 6x15 - 150x14 + 574x13 + 5002x12 - 3594x11 + 125213x10 + 274386x9 - 6083799x8 - 29821162x7 - 15297636x6 + 180770578x5 + 173251248x4 + 2483202618x3 + 5555106669x2 - 24358063202x - 13764977908 \( 67^{8}\cdot 89^{15} \) $(C_2\times OD_{16}).D_4$ (as 16T591) Trivial (GRH)
16.8.70704738646532877581735658786300135551283209.2 x16 - 2x15 - 165x14 + 1320x13 - 9147x12 - 79038x11 + 715973x10 + 4115620x9 + 12101655x8 + 43053882x7 - 174579123x6 - 1501317600x5 - 1949248180x4 + 4871115840x3 + 15103522624x2 + 14280858112x + 5144433664 \( 67^{8}\cdot 89^{15} \) $(C_2\times OD_{16}).D_4$ (as 16T591) Trivial (GRH)
16.12.121398883921746872662013204631882371288461633.1 x16 - 4x15 - 235x14 - 518x13 + 14110x12 + 180490x11 + 576156x10 - 8926458x9 - 48291565x8 + 162030550x7 + 905586480x6 - 924037993x5 - 6692210494x4 + 1795154696x3 + 19605075113x2 - 511640977x - 18891513523 \( 61^{8}\cdot 97^{15} \) $(C_2\times OD_{16}).D_4$ (as 16T591) $[2, 4]$ (GRH)
16.4.121398883921746872662013204631882371288461633.2 x16 - 6x15 + 223x14 - 1045x13 + 16639x12 - 101082x11 + 577204x10 - 4365410x9 + 1244977x8 - 77115479x7 - 338640099x6 + 740318833x5 - 14795099235x4 + 72820441481x3 - 200064755609x2 + 251912468219x - 78782439251 \( 61^{8}\cdot 97^{15} \) $(C_2\times OD_{16}).D_4$ (as 16T591) $[2, 2, 2, 4]$ (GRH)
16.16.61241780195042689588946649619585484552657695735808.1 x16 - 33541x14 + 458180345x12 - 3295638200574x10 + 13470632027977447x8 - 31542985045966774416x6 + 40636889264751328818438x4 - 25569713573708678886123648x2 + 5549872123325448369911507057 \( 2^{16}\cdot 17^{15}\cdot 67^{4}\cdot 63443^{4} \) $(C_2\times OD_{16}).D_4$ (as 16T591) $[2, 2]$ (GRH)
16.16.61241780195042689588946649619585484552657695735808.2 x16 - 33473x14 + 456624845x12 - 3278343720046x10 + 13361907896488851x8 - 31155934760944574792x6 + 39890402242602894406078x4 - 24953450052120111870485864x2 + 5549872123325448369911507057 \( 2^{16}\cdot 17^{15}\cdot 67^{4}\cdot 63443^{4} \) $(C_2\times OD_{16}).D_4$ (as 16T591) $[2, 2]$ (GRH)


Download all search results for