Learn more about

Further refine search

Results (displaying matches 1-50 of 126) Next

Label Polynomial Discriminant Galois group Class group
16.0.20542695432781824.1 x16 - 4x15 + 14x14 - 36x13 + 80x12 - 152x11 + 256x10 - 372x9 + 451x8 - 444x7 + 328x6 - 172x5 + 80x4 - 48x3 + 26x2 - 8x + 1 \( 2^{32}\cdot 3^{14} \) $QD_{16}$ (as 16T12) Trivial
16.0.66202447602479769.1 x16 - 2x15 + 3x14 + 8x13 - 16x12 + 21x11 + 16x10 - 38x9 + 57x8 - 11x7 - 26x6 + 63x5 - 16x4 - x3 + 24x2 - 5x + 1 \( 3^{14}\cdot 7^{12} \) $QD_{16}$ (as 16T12) Trivial
16.0.288230376151711744.5 x16 - 8x14 + 32x12 - 72x10 + 102x8 - 88x6 + 32x4 + 8x2 + 1 \( 2^{58} \) $QD_{16}$ (as 16T12) Trivial (GRH)
16.0.328683126924509184.1 x16 + 6x12 + 39x8 - 18x4 + 9 \( 2^{36}\cdot 3^{14} \) $QD_{16}$ (as 16T12) Trivial
16.0.4146377695556640625.2 x16 - x15 + x14 - 7x13 + 29x12 - 45x11 + 23x10 + 21x9 + 23x8 - 21x7 + 23x6 + 45x5 + 29x4 + 7x3 + x2 + x + 1 \( 5^{12}\cdot 19^{8} \) $QD_{16}$ (as 16T12) $[2]$
16.0.18446744073709551616.11 x16 + 68x8 + 4 \( 2^{64} \) $QD_{16}$ (as 16T12) Trivial
16.0.201814631309311180281.1 x16 - 7x15 + 32x14 - 109x13 + 286x12 - 623x11 + 1178x10 - 1895x9 + 2554x8 - 2901x7 + 2784x6 - 2259x5 + 1683x4 - 1332x3 + 1044x2 - 576x + 144 \( 3^{12}\cdot 11^{14} \) $QD_{16}$ (as 16T12) Trivial
16.0.1346286087882789617664.1 x16 + 12x12 + 156x8 - 144x4 + 144 \( 2^{48}\cdot 3^{14} \) $QD_{16}$ (as 16T12) Trivial (GRH)
16.0.1346286087882789617664.2 x16 - 12x12 + 156x8 + 144x4 + 144 \( 2^{48}\cdot 3^{14} \) $QD_{16}$ (as 16T12) Trivial
16.0.1622647227216566419456.5 x16 - 4x14 + 32x12 - 100x10 + 141x8 - 120x6 + 92x4 - 32x2 + 4 \( 2^{48}\cdot 7^{8} \) $QD_{16}$ (as 16T12) $[2]$
16.0.1622647227216566419456.7 x16 + 4x14 + 32x12 + 100x10 + 141x8 + 120x6 + 92x4 + 32x2 + 4 \( 2^{48}\cdot 7^{8} \) $QD_{16}$ (as 16T12) $[2]$
16.0.1891079497931380752384.9 x16 + 40x12 - 144x11 + 720x9 - 948x8 - 1152x7 + 10368x6 - 14400x5 + 10192x4 - 2016x3 + 10368x2 - 14112x + 9604 \( 2^{58}\cdot 3^{8} \) $QD_{16}$ (as 16T12) $[2]$ (GRH)
16.0.10586216645130957012009.1 x16 - 7x15 + 11x14 + 36x13 - 151x12 + 79x11 + 514x10 - 885x9 - 251x8 + 2148x7 - 977x6 - 2815x5 + 3845x4 + 2340x3 - 5632x2 - 1376x + 3184 \( 3^{14}\cdot 19^{12} \) $QD_{16}$ (as 16T12) Trivial (GRH)
16.0.35847274805742431640625.1 x16 - 2x15 - 6x14 - 11x13 + 114x12 - 15x11 + 62x10 + 193x9 + 828x8 + 298x7 + 952x6 + 1715x5 + 924x4 + 114x3 + 34x2 - 7x + 1 \( 5^{12}\cdot 59^{8} \) $QD_{16}$ (as 16T12) $[6]$ (GRH)
16.0.43190748110316471478641.3 x16 - 2x15 + 2x14 - 20x13 + 53x12 - 41x11 + 28x10 - 213x9 + 372x8 - 207x7 + 567x6 - 3132x5 + 7560x4 - 8424x3 + 6399x2 - 2673x + 729 \( 3^{8}\cdot 37^{12} \) $QD_{16}$ (as 16T12) $[2]$ (GRH)
16.0.370387893043593994140625.1 x16 - 2x15 + 4x14 - 31x13 + 99x12 - 90x11 + 187x10 + 338x9 + 1263x8 + 1943x7 + 2252x6 + 1715x5 + 684x4 + 69x3 + 69x2 - 7x + 1 \( 5^{12}\cdot 79^{8} \) $QD_{16}$ (as 16T12) $[10]$ (GRH)
16.16.1378596953991976568487936.1 x16 - 40x14 + 496x12 - 2176x10 + 3586x8 - 2536x6 + 736x4 - 64x2 + 1 \( 2^{58}\cdot 3^{14} \) $QD_{16}$ (as 16T12) Trivial (GRH)
16.16.1378596953991976568487936.2 x16 - 24x14 + 216x12 - 936x10 + 2094x8 - 2376x6 + 1224x4 - 216x2 + 9 \( 2^{58}\cdot 3^{14} \) $QD_{16}$ (as 16T12) Trivial (GRH)
16.0.1378596953991976568487936.7 x16 + 8x14 + 76x12 - 304x10 + 3136x8 - 10576x6 + 37384x4 - 59584x2 + 81796 \( 2^{58}\cdot 3^{14} \) $QD_{16}$ (as 16T12) $[3, 6]$ (GRH)
16.0.1378596953991976568487936.8 x16 + 24x14 + 216x12 + 936x10 + 2094x8 + 2376x6 + 1224x4 + 216x2 + 9 \( 2^{58}\cdot 3^{14} \) $QD_{16}$ (as 16T12) $[3, 6]$ (GRH)
16.0.1824496001102094673202161.1 x16 - 6x15 + 15x14 - 14x13 - 48x12 + 294x11 - 273x10 - 506x9 + 1021x8 - 2042x7 + 5757x6 - 3358x5 + 3832x4 - 1080x3 + 1297x2 - 1258x + 347 \( 13^{12}\cdot 23^{8} \) $QD_{16}$ (as 16T12) $[6]$ (GRH)
16.16.2643693128974804931640625.1 x16 - 2x15 - 40x14 + 5x13 + 496x12 + 365x11 - 2354x10 - 2765x9 + 4166x8 + 5870x7 - 3235x6 - 5108x5 + 1076x4 + 1825x3 - 100x2 - 200x + 5 \( 5^{12}\cdot 101^{8} \) $QD_{16}$ (as 16T12) Trivial (GRH)
16.0.3767366677314336061820409.1 x16 - 2x15 + 3x14 + 44x13 - 100x12 + 165x11 + 628x10 - 1694x9 + 3117x8 + 2653x7 - 10970x6 + 23013x5 - 5884x4 - 19543x3 + 57858x2 - 44825x + 26569 \( 3^{14}\cdot 31^{12} \) $QD_{16}$ (as 16T12) $[3, 3, 3]$ (GRH)
16.0.17415183620366462784744081.1 x16 - 2x15 + 2x14 - 32x13 + 41x12 - 113x11 - 320x10 + 501x9 + 2370x8 + 5301x7 + 11097x6 + 14526x5 + 13716x4 + 13284x3 + 9315x2 + 3159x + 729 \( 3^{8}\cdot 61^{12} \) $QD_{16}$ (as 16T12) $[3, 6]$ (GRH)
16.0.191125675354752187786114569.1 x16 - 2x15 + 3x14 + 62x13 - 91x12 + 84x11 + 1258x10 - 1352x9 + 1686x8 + 8296x7 - 9998x6 + 15372x5 + 20405x4 - 23638x3 + 53511x2 + 24250x + 15625 \( 3^{14}\cdot 43^{12} \) $QD_{16}$ (as 16T12) $[3, 3]$ (GRH)
16.0.272312684996154152285848081.4 x16 - 2x15 - 26x14 + 97x13 + 222x12 - 1649x11 + 2145x10 + 3620x9 - 6441x8 - 11003x7 + 13201x6 + 21811x5 + 35690x4 - 177095x3 + 212585x2 - 32622x + 22987 \( 13^{12}\cdot 43^{8} \) $QD_{16}$ (as 16T12) $[4]$ (GRH)
16.0.1411114225648575427835680561.5 x16 - 2x15 - 15x14 + 17x13 + 108x12 - 47x11 + 453x10 - 4466x9 + 10451x8 - 27969x7 + 64250x6 - 133292x5 + 359613x4 - 301048x3 + 604461x2 - 1094445x + 543169 \( 11^{8}\cdot 37^{12} \) $QD_{16}$ (as 16T12) $[4]$ (GRH)
16.16.1450531566903202684958906641.1 x16 - 2x15 - 44x14 + 4x13 + 489x12 - 41x11 - 2481x10 + 1058x9 + 5943x8 - 5231x7 - 4418x6 + 7321x5 - 2683x4 - 56x3 + 164x2 - 24x + 1 \( 13^{12}\cdot 53^{8} \) $QD_{16}$ (as 16T12) Trivial (GRH)
16.0.2832009822518079193000591441.3 x16 - 2x15 - 25x14 + 36x13 + 216x12 - 324x11 + 679x10 + 6422x9 + 2927x8 + 1374x7 + 14311x6 - 22802x5 - 16736x4 - 47978x3 - 157563x2 + 76048x + 231623 \( 7^{8}\cdot 53^{12} \) $QD_{16}$ (as 16T12) $[2]$ (GRH)
16.0.2859655432078149808865465089.4 x16 - 8x15 + 26x14 - 8x13 - 102x12 - 158x11 + 2102x10 - 4202x9 + 4010x8 - 26056x7 + 129750x6 - 242978x5 + 262361x4 - 607918x3 + 1746316x2 - 1857456x + 630208 \( 17^{14}\cdot 19^{8} \) $QD_{16}$ (as 16T12) $[8]$ (GRH)
16.16.4466413296812760910104974161.1 x16 - 2x15 - 47x14 + 84x13 + 830x12 - 1285x11 - 6962x10 + 8567x9 + 29036x8 - 23444x7 - 56582x6 + 17003x5 + 42505x4 + 2494x3 - 9018x2 - 1896x + 107 \( 13^{12}\cdot 61^{8} \) $QD_{16}$ (as 16T12) Trivial (GRH)
16.0.11059281013440062648863435321.1 x16 - 2x15 + 3x14 + 67x13 + 19x12 - 142x11 + 792x10 + 1862x9 + 7725x8 + 6707x7 - 17082x6 + 2780x5 + 54986x4 + 52783x3 + 32352x2 - 2819x + 11519 \( 7^{12}\cdot 19^{14} \) $QD_{16}$ (as 16T12) Trivial (GRH)
16.0.13872985106194361214049869121.12 x16 - 3x15 + 28x14 - 114x13 + 852x12 - 3491x11 + 17733x10 - 66039x9 + 237086x8 - 657477x7 + 1657820x6 - 3644405x5 + 6687334x4 - 9559647x3 + 9697143x2 - 6329080x + 2032643 \( 17^{12}\cdot 47^{8} \) $QD_{16}$ (as 16T12) $[2, 2, 20]$ (GRH)
16.0.39137690856572912103863781609.1 x16 - 2x15 + 9x14 + 92x13 + 89x12 - 840x11 - 1775x10 + 1696x9 + 5097x8 + 3274x7 + 32545x6 + 33990x5 - 53896x4 + 180536x3 + 1069344x2 + 1863904x + 1577536 \( 3^{14}\cdot 67^{12} \) $QD_{16}$ (as 16T12) Trivial (GRH)
16.0.105305708997757955232277716721.1 x16 - 2x15 - 26x14 + 104x13 - 239x12 + 290x11 + 3372x10 - 24160x9 + 135908x8 - 592576x7 + 1771924x6 - 3671311x5 + 5411845x4 - 5547846x3 + 3633675x2 - 1274255x + 176983 \( 11^{8}\cdot 53^{12} \) $QD_{16}$ (as 16T12) $[3, 6]$ (GRH)
16.0.236584058764743389289008392801.16 x16 - 2x15 + 2x14 + 54x13 + 51x12 - 686x11 + 3527x10 - 1820x9 - 30601x8 + 136034x7 - 124185x6 - 473688x5 + 2051118x4 - 1944392x3 - 1582275x2 + 3764514x + 3143164 \( 17^{12}\cdot 67^{8} \) $QD_{16}$ (as 16T12) $[2, 2, 4]$ (GRH)
16.0.282632865427655493724677478329.1 x16 - 2x15 - 118x13 - 19x12 + 1575x11 + 2191x10 - 2153x9 - 351x8 + 178093x7 + 1088971x6 + 1254015x5 + 4489289x4 - 3024586x3 + 37624698x2 - 30305084x + 27952369 \( 3^{14}\cdot 79^{12} \) $QD_{16}$ (as 16T12) $[9, 45]$ (GRH)
16.16.400734980167009195224860426161.1 x16 - 97x14 - 126x13 + 3396x12 + 8716x11 - 45478x10 - 190092x9 + 62158x8 + 1261949x7 + 1827770x6 - 537602x5 - 3462683x4 - 2820970x3 - 267121x2 + 597619x + 201601 \( 13^{8}\cdot 53^{12} \) $QD_{16}$ (as 16T12) Trivial (GRH)
16.16.440166027395300672133281640625.1 x16 - 2x15 - 78x14 + 159x13 + 2362x12 - 5016x11 - 34929x10 + 79762x9 + 256088x8 - 659347x7 - 785803x6 + 2560624x5 + 268374x4 - 3315295x3 + 864770x2 + 891400x - 317375 \( 5^{8}\cdot 101^{12} \) $QD_{16}$ (as 16T12) Trivial (GRH)
16.0.800737337114777368288115578449.4 x16 - 3x15 + 37x14 - 104x13 + 850x12 - 2306x11 + 12064x10 - 30644x9 + 122068x8 - 304134x7 + 826306x6 - 1935990x5 + 4270839x4 - 7629345x3 + 12479679x2 - 14077098x + 16112196 \( 3^{8}\cdot 73^{14} \) $QD_{16}$ (as 16T12) $[4]$ (GRH)
16.0.1766969156799962667099298073761.20 x16 - 6x15 + 31x14 - 14x13 - 160x12 - 1310x11 + 11738x10 - 22602x9 + 2030x8 + 30444x7 + 300929x6 - 1078216x5 + 4034535x4 - 9955312x3 + 4560832x2 + 10864280x + 34932400 \( 23^{8}\cdot 41^{12} \) $QD_{16}$ (as 16T12) $[6, 6, 12]$ (GRH)
16.0.1968033759133442969054057291329.1 x16 - x15 + 22x14 - 81x13 + 865x12 - 3306x11 + 6939x10 - 17651x9 + 5438x8 + 65961x7 - 35077x6 - 42578x5 - 29044x4 - 122784x3 + 52048x2 + 209248x + 87872 \( 17^{14}\cdot 43^{8} \) $QD_{16}$ (as 16T12) $[24]$ (GRH)
16.16.2165234002589380425486809479441.1 x16 - x15 - 107x14 + 25x13 + 4506x12 + 1965x11 - 94158x10 - 95986x9 + 1008688x8 + 1550091x7 - 5130166x6 - 10614120x5 + 9737766x4 + 30871725x3 + 2446090x2 - 31380089x - 17848727 \( 13^{8}\cdot 61^{12} \) $QD_{16}$ (as 16T12) Trivial (GRH)
16.0.2507625255850803120915676947241.1 x16 - 2x15 + 5x14 + 92x13 + 79x12 + 288x11 + 2668x10 + 7938x9 + 24209x8 + 56768x7 + 96471x6 + 180066x5 + 65135x4 - 522598x3 + 407384x2 + 1365832x + 1430416 \( 11^{12}\cdot 19^{14} \) $QD_{16}$ (as 16T12) Trivial (GRH)
16.0.3291419362365438198446597168601.1 x16 - 5x15 - 28x14 + 29x13 + 824x12 + 2465x11 - 10425x10 - 72966x9 - 45536x8 + 794904x7 + 3196416x6 - 2423392x5 - 26235328x4 - 29006080x3 + 75011072x2 + 211959808x + 143392768 \( 3^{12}\cdot 59^{14} \) $QD_{16}$ (as 16T12) $[3, 3, 3]$ (GRH)
16.0.4009292695690170390860412175969.19 x16 - 8x15 + 64x14 - 308x13 + 1682x12 - 6452x11 + 25776x10 - 76124x9 + 281589x8 - 729716x7 + 1987704x6 - 3669248x5 + 6950160x4 - 8513728x3 + 13870848x2 - 10122240x + 82509824 \( 17^{14}\cdot 47^{8} \) $QD_{16}$ (as 16T12) $[4, 12, 120]$ (GRH)
16.0.8322074981098944220712357040361.1 x16 - 2x15 + 12x14 - 25x13 + 173x12 - 1719x11 + 7483x10 - 10055x9 - 26783x8 + 105894x7 + 125405x6 - 1722505x5 + 5788287x4 - 11178929x3 + 13401259x2 - 9271368x + 2808063 \( 11^{14}\cdot 23^{12} \) $QD_{16}$ (as 16T12) $[3]$ (GRH)
16.0.10483151353726139536553735554369.7 x16 - 8x15 + 132x14 - 784x13 + 6578x12 - 29640x11 + 161878x10 - 555422x9 + 2130764x8 - 5486248x7 + 15012390x6 - 27873848x5 + 52839433x4 - 64659186x3 + 76467296x2 - 48013336x + 22193008 \( 17^{14}\cdot 53^{8} \) $QD_{16}$ (as 16T12) $[11, 44]$ (GRH)
16.0.19244198650569257148820544058721.5 x16 + 44x14 + 570x12 + 3210x10 + 80135x8 + 1029206x6 + 2258879x4 + 3204625x2 + 600625 \( 31^{8}\cdot 41^{12} \) $QD_{16}$ (as 16T12) $[2, 2, 60]$ (GRH)
16.0.24722989956581301387479701814209.4 x16 - 8x15 - 4x14 + 168x13 - 18x12 - 2440x11 + 1466x10 + 19994x9 + 2364x8 - 164840x7 + 31514x6 + 602240x5 - 47635x4 - 1158746x3 - 748608x2 + 1464552x + 8353648 \( 17^{14}\cdot 59^{8} \) $QD_{16}$ (as 16T12) $[24]$ (GRH)
Next

Download all search results for