Learn more about

Further refine search

Results (displaying all 39 matches)

Label Polynomial Discriminant Galois group Class group
16.8.81753664774171848863873.1 x16 - 3x15 - 8x14 + 58x13 - 72x12 - 209x11 + 729x10 - 606x9 - 953x8 + 2757x7 - 2253x6 - 500x5 + 2265x4 - 1593x3 + 325x2 + 130x - 67 \( 13^{4}\cdot 17^{15} \) $C_2^3.C_8$ (as 16T104) Trivial (GRH)
16.8.187591757103747287810048.3 x16 - 34x12 + 187x8 - 34x6 - 255x4 + 51x2 + 17 \( 2^{16}\cdot 17^{15} \) $C_2^3.C_8$ (as 16T104) Trivial (GRH)
16.8.13967711378414469438602033.2 x16 - 5x15 + 25x14 - 91x13 + 183x12 - 269x11 - 882x10 + 4002x9 - 12071x8 + 26355x7 - 16226x6 - 15464x5 + 18449x4 - 19451x3 + 36514x2 - 27904x + 6767 \( 17^{15}\cdot 47^{4} \) $C_2^3.C_8$ (as 16T104) Trivial (GRH)
16.0.20928938182187993309151488.1 x16 - 3x15 + 26x14 - 61x13 + 302x12 - 481x11 + 1800x10 - 1694x9 + 6221x8 - 1408x7 + 12724x6 + 4447x5 + 29261x4 + 14047x3 + 63157x2 + 36221x + 38659 \( 2^{8}\cdot 13^{4}\cdot 17^{15} \) $C_2^3.C_8$ (as 16T104) $[2, 2, 50]$ (GRH)
16.16.20928938182187993309151488.1 x16 - 5x15 - 26x14 + 164x13 + 183x12 - 2054x11 + 546x10 + 12026x9 - 12139x8 - 31190x7 + 50618x6 + 21443x5 - 70291x4 + 18850x3 + 23458x2 - 12808x + 1123 \( 2^{8}\cdot 13^{4}\cdot 17^{15} \) $C_2^3.C_8$ (as 16T104) Trivial (GRH)
16.8.57681033264163530732453953.4 x16 - 3x15 + 9x14 + 24x13 - 106x12 - 243x11 - 461x10 + 4375x9 - 4727x8 - 4995x7 + 30047x6 - 70727x5 + 97907x4 - 53868x3 - 44487x2 + 42154x + 2381 \( 17^{15}\cdot 67^{4} \) $C_2^3.C_8$ (as 16T104) Trivial (GRH)
16.8.179594836941784276350012113.1 x16 - 4x15 + 16x14 - 13x13 - 305x12 + 1526x11 - 4710x10 + 9235x9 - 5745x8 - 19350x7 + 74102x6 - 173243x5 + 385986x4 - 615472x3 + 440486x2 + 3302x - 98429 \( 17^{15}\cdot 89^{4} \) $C_2^3.C_8$ (as 16T104) Trivial (GRH)
16.0.3780184196000221150082102263808.1 x16 + 153x14 + 9146x12 + 279905x10 + 4752843x8 + 44966581x6 + 224207594x4 + 506184129x2 + 342569057 \( 2^{16}\cdot 17^{15}\cdot 67^{4} \) $C_2^3.C_8$ (as 16T104) $[2, 2, 2, 2, 2, 2228]$ (GRH)
16.16.3780184196000221150082102263808.1 x16 - 153x14 + 9146x12 - 279905x10 + 4752843x8 - 44966581x6 + 224207594x4 - 506184129x2 + 342569057 \( 2^{16}\cdot 17^{15}\cdot 67^{4} \) $C_2^3.C_8$ (as 16T104) Trivial (GRH)
16.8.66688975910627504451630153142433.2 x16 - x15 - 84x14 + 526x13 - 1461x12 + 1070x11 + 11918x10 - 50814x9 + 95150x8 - 83318x7 - 55402x6 - 449804x5 + 2075106x4 - 1186125x3 - 2215830x2 + 2558448x + 1672427 \( 13^{12}\cdot 17^{15} \) $C_2^3.C_8$ (as 16T104) $[2, 4]$ (GRH)
16.8.4734759874359678578687627415368937.1 x16 - 8x15 + 30x14 - 70x13 - 598x12 + 4134x11 - 8498x10 + 3880x9 + 69102x8 - 253070x7 + 339220x6 - 162276x5 - 97045x4 + 184874x3 - 113712x2 + 34036x - 4157 \( 3^{12}\cdot 73^{15} \) $C_2^3.C_8$ (as 16T104) Trivial (GRH)
16.8.9491566863962023381888433837890625.1 x16 - 8x15 + 30x14 - 70x13 - 450x12 + 3246x11 - 14558x10 + 42320x9 - 83050x8 + 115130x7 - 47368x6 - 119996x5 + 288595x4 - 309070x3 - 99740x2 + 224988x - 55949 \( 5^{14}\cdot 41^{15} \) $C_2^3.C_8$ (as 16T104) $[8]$ (GRH)
16.8.9491566863962023381888433837890625.2 x16 - 8x15 + 30x14 - 70x13 - 450x12 + 3246x11 - 4308x10 - 8930x9 + 45690x8 - 92330x7 + 39962x6 + 128874x5 - 383805x4 + 481410x3 - 346560x2 + 137248x - 16384 \( 5^{14}\cdot 41^{15} \) $C_2^3.C_8$ (as 16T104) $[8]$ (GRH)
16.8.2164959798672044689794137876838502993.1 x16 - 4x15 - 41x14 - 130x13 - 2186x12 + 10546x11 + 124718x10 + 77955x9 + 18509x8 + 8606523x7 + 27735607x6 + 128700291x5 + 1368635976x4 + 4658216687x3 + 3073249780x2 - 7839808132x - 9179159021 \( 43^{4}\cdot 97^{15} \) $C_2^3.C_8$ (as 16T104) $[2, 2]$ (GRH)
16.8.3090063795858197568077038853384324833.3 x16 - 3x15 - 17x14 - 652x13 - 2640x12 + 4292x11 - 2603x10 + 577894x9 + 166968x8 + 4917135x7 + 4209376x6 - 8766217x5 + 15633220x4 - 86630330x3 - 10934242x2 + 5095648x + 631471 \( 47^{4}\cdot 97^{15} \) $C_2^3.C_8$ (as 16T104) $[2, 2]$ (GRH)
16.8.8767895277848913089642817986417897713.1 x16 - 6x15 - 68x14 - 75x13 - 2082x12 + 23660x11 + 97345x10 - 688528x9 + 384199x8 - 3788717x7 + 3798904x6 + 392424841x5 + 341740386x4 + 161939835x3 - 7687245606x2 + 6779883369x - 791777377 \( 61^{4}\cdot 97^{15} \) $C_2^3.C_8$ (as 16T104) $[4, 4]$ (GRH)
16.16.1062747667303462437668657811578369140625.1 x16 - x15 - 197x14 - 102x13 + 10926x12 + 5579x11 - 264375x10 - 11771x9 + 3149729x8 - 1649977x7 - 17580825x6 + 17914002x5 + 36131021x4 - 53976394x3 - 3024783x2 + 29665257x - 10313939 \( 5^{14}\cdot 89^{15} \) $C_2^3.C_8$ (as 16T104) $[2, 2]$ (GRH)
16.0.1062747667303462437668657811578369140625.2 x16 - 7x15 + 48x14 + 881x13 - 2450x12 + 4931x11 + 110498x10 - 129737x9 + 410366x8 - 600295x7 - 997465x6 + 3926065x5 - 3011335x4 + 6342040x3 - 657200x2 - 20284665x + 22137835 \( 5^{14}\cdot 89^{15} \) $C_2^3.C_8$ (as 16T104) $[4, 25876]$ (GRH)
16.8.706991024666918541719408792174287819307153.1 x16 - x15 + 188x14 + 7377x13 - 17594x12 - 1381795x11 - 5293289x10 + 69162204x9 + 480433550x8 - 1037559794x7 - 13587856083x6 + 10794765535x5 + 255680761873x4 - 71370632807x3 - 3911934284598x2 - 8682678868227x - 5465405110997 \( 17^{15}\cdot 89^{12} \) $C_2^3.C_8$ (as 16T104) $[2, 4]$ (GRH)
16.8.19719055677142144882125300632796548005703977.1 x16 - 8x15 + 30x14 - 70x13 - 32134x12 + 193350x11 - 2198790x10 + 9220860x9 - 10053370x8 - 12983686x7 + 814005396x6 - 2359973708x5 - 3456857577x4 + 10814479334x3 - 15509537492x2 + 9713737864x - 823982021 \( 19^{12}\cdot 73^{15} \) $C_2^3.C_8$ (as 16T104) Trivial (GRH)
16.8.62141154520506997217088824525941184562505001.1 x16 - 8x15 + 30x14 - 70x13 - 28535x12 + 171756x11 - 1363335x10 + 5241530x9 + 96731439x8 - 416484476x7 + 5419873627x6 - 14781801288x5 - 10127121036x4 + 44395141190x3 - 2031620275545x2 + 2007029914720x + 8241104367689 \( 41^{15}\cdot 43^{12} \) $C_2^3.C_8$ (as 16T104) Trivial (GRH)
16.8.195243657193163639221629075064503172225659097.1 x16 - 4x15 - 29x14 - 1560x13 - 49358x12 + 43368x11 - 2592178x10 - 4534424x9 + 83558589x8 + 499725828x7 + 5448645279x6 + 40146705456x5 + 206054540288x4 + 621629449624x3 + 721476532032x2 - 243288205952x - 716371879936 \( 23^{12}\cdot 73^{15} \) $C_2^3.C_8$ (as 16T104) Trivial (GRH)
16.8.5600075906386661768959437042812533816731958913.1 x16 - x15 - 662x14 + 2719x13 + 78065x12 - 715973x11 + 10413130x10 - 41911767x9 - 1159905613x8 + 7553415536x7 + 37089111838x6 - 393273090724x5 + 493775735297x4 + 3751528448186x3 - 13423616432713x2 + 14170208488667x - 4125171948377 \( 17^{15}\cdot 89^{14} \) $C_2^3.C_8$ (as 16T104) $[2, 8]$ (GRH)
16.8.5600075906386661768959437042812533816731958913.2 x16 - x15 - 662x14 - 9385x13 - 65670x12 - 687226x11 - 5633748x10 - 20006553x9 - 345111236x8 - 5406999958x7 - 28256937548x6 + 9956127740x5 + 670089369972x4 + 2925833801882x3 + 6158845500328x2 + 7013223282254x + 3596679729757 \( 17^{15}\cdot 89^{14} \) $C_2^3.C_8$ (as 16T104) $[2, 8]$ (GRH)
16.16.15359445630083788418852698524374845584773320185041.1 x16 - 5x15 - 1709x14 + 5733x13 + 1025838x12 - 2578770x11 - 260470219x10 + 537783345x9 + 27172084547x8 - 27058405023x7 - 1122845915066x6 + 475008820192x5 + 14316222629824x4 - 14649824518528x3 - 10929645040640x2 + 7374113275904x + 3477032665088 \( 41^{15}\cdot 61^{14} \) $C_2^3.C_8$ (as 16T104) $[2, 2]$ (GRH)
16.0.15359445630083788418852698524374845584773320185041.6 x16 - 3x15 - 466x14 + 8167x13 + 204662x12 + 89446x11 + 26545517x10 + 1241998870x9 + 20144084946x8 + 243389781077x7 + 2107575937554x6 + 12621694069014x5 + 82741220348795x4 - 276270386009564x3 + 2766467958123332x2 - 3706153303430478x + 1463534766472091 \( 41^{15}\cdot 61^{14} \) $C_2^3.C_8$ (as 16T104) $[4, 11975140]$ (GRH)
16.8.20231328175647090122615673426308895930590180621609.1 x16 - 4x15 - 37x14 - 4036x13 - 186046x12 + 1318432x11 + 19436086x10 + 195916584x9 + 5460971989x8 - 61011866388x7 - 252544335297x6 + 2645214889372x5 - 53240095283656x4 + 27704092920824x3 + 178672951198304x2 - 2193741464668160x - 3108481636851712 \( 47^{12}\cdot 89^{15} \) $C_2^3.C_8$ (as 16T104) Trivial (GRH)
16.8.72902183182742832065008845132818265359946436492777.1 x16 - 8x15 + 30x14 - 70x13 - 348370x12 + 2090766x11 - 41550754x10 + 188587700x9 + 5889687494x8 - 24667276606x7 + 758427128184x6 - 2188176847700x5 - 2945197729257x4 + 9508212706382x3 - 1164602131361688x2 + 1159487494913896x + 513540167205851 \( 67^{12}\cdot 73^{15} \) $C_2^3.C_8$ (as 16T104) Trivial (GRH)
16.8.526463173424807410745021702403427128295303807818937.1 x16 - 4x15 - 29x14 + 5886x13 - 850971x12 + 2780x11 + 204791405x10 - 41499142x9 + 61421290143x8 - 7995133208x7 - 12918699536515x6 - 45621986975278x5 - 2108604337447076x4 - 386139934252072x3 + 266577755600244992x2 + 1432339139767432576x + 20138270326434543616 \( 73^{15}\cdot 79^{12} \) $C_2^3.C_8$ (as 16T104) Trivial (GRH)
16.8.1680869644357963641125481571233506843563004905118353.2 x16 - 4x15 - 41x14 - 11673x13 - 454109x12 + 2184995x11 + 78893665x10 + 3434567043x9 + 57917196094x8 - 481785086219x7 - 12675582312061x6 - 202418022839255x5 - 1423478158368283x4 + 18985774070078141x3 + 250647316750174834x2 + 1331571217615502528x + 4011939306776803313 \( 61^{12}\cdot 97^{15} \) $C_2^3.C_8$ (as 16T104) $[2, 2, 4]$ (GRH)
16.8.2857263440495560367103411585720766893299521110665609.1 x16 - 4x15 - 37x14 - 6172x13 - 527806x12 + 1651648x11 - 61310410x10 + 688001144x9 + 37964908341x8 - 460309412308x7 + 4828308042143x6 - 15136486766876x5 - 98143453715880x4 + 844893035355224x3 - 2797368182141824x2 + 1561832763993728x + 1333629299617792 \( 71^{12}\cdot 89^{15} \) $C_2^3.C_8$ (as 16T104) Trivial (GRH)
16.8.13854815685101981032101054249860279864869741101695057.1 x16 - 7x15 - 1380x14 + 4314x13 + 668694x12 - 280415x11 - 196778428x10 - 1081392193x9 + 37182839562x8 + 640346059654x7 - 1039599254791x6 - 124062279034770x5 - 848384823179655x4 + 5872021418457196x3 + 83906088161932922x2 + 210034438044426092x - 261511764516720983 \( 41^{15}\cdot 73^{15} \) $C_2^3.C_8$ (as 16T104) $[48]$ (GRH)
16.8.13854815685101981032101054249860279864869741101695057.2 x16 - 8x15 + 30x14 - 70x13 - 433123x12 + 2599284x11 - 64876517x10 + 300555100x9 - 39325421x8 - 1617435648x7 + 99309516517x6 - 291033786670x5 - 420732794356x4 + 1324048078030x3 - 8192417846781x2 + 7482245749632x + 11036826128683 \( 41^{15}\cdot 73^{15} \) $C_2^3.C_8$ (as 16T104) $[48]$ (GRH)
16.8.13854815685101981032101054249860279864869741101695057.3 x16 - 125706x12 - 8613854x10 + 4061186735x8 + 450184977646x6 - 11542208172049x4 - 1507021151328107x2 + 10792143313968857 \( 41^{15}\cdot 73^{15} \) $C_2^3.C_8$ (as 16T104) $[48]$ (GRH)
16.8.13854815685101981032101054249860279864869741101695057.4 x16 - x15 + 94x14 + 6208x13 - 246687x12 - 145121x11 - 10993465x10 - 1114369992x9 + 15068632831x8 - 1048567964x7 - 404880849047x6 + 40524218769108x5 - 238409158886151x4 - 1546925722655262x3 + 7605509253401021x2 + 28165196463819167x + 20617776290452519 \( 41^{15}\cdot 73^{15} \) $C_2^3.C_8$ (as 16T104) $[48]$ (GRH)
16.8.87995526059768479187762363921103601182604493355285937.1 x16 - 4x15 - 29x14 + 9025x13 - 564592x12 + 600723x11 + 106534135x10 - 2295493716x9 + 41697009299x8 + 210269586483x7 - 8329715762855x6 + 42632626532812x5 - 69676368352736x4 - 258874459402297x3 + 945131876919130x2 - 148420382825981x - 2223621705617209 \( 61^{14}\cdot 73^{15} \) $C_2^3.C_8$ (as 16T104) $[8]$ (GRH)
16.8.87995526059768479187762363921103601182604493355285937.2 x16 - 4x15 - 29x14 - 8787x13 - 466626x12 + 2577855x11 + 104450131x10 + 1646275166x9 + 21202851621x8 - 374714718069x7 - 7222778406903x6 - 23859158339510x5 + 192307300221262x4 + 4255857054532135x3 + 29656924089445914x2 + 79631144220170561x + 97623421972208003 \( 61^{14}\cdot 73^{15} \) $C_2^3.C_8$ (as 16T104) $[8]$ (GRH)
16.8.240277040497518512877081049134097240815202879947452081.1 x16 - 4x15 - 37x14 + 9581x13 - 621434x12 + 3159219x11 - 122064213x10 - 1318149458x9 + 17745867159x8 - 185731157449x7 + 1070375916313x6 + 8721064590146x5 - 22238144524836x4 + 153070746965979x3 + 852542410999822x2 + 263445165203961x - 1115465623645375 \( 53^{14}\cdot 89^{15} \) $C_2^3.C_8$ (as 16T104) $[8]$ (GRH)
16.8.240277040497518512877081049134097240815202879947452081.2 x16 - 4x15 - 37x14 - 9287x13 - 489358x12 + 2895067x11 + 123682053x10 + 1561814892x9 + 21247871733x8 - 299097667517x7 - 4577780534713x6 - 6633762668540x5 + 145824602336670x4 + 1096700690244239x3 + 3639176903823396x2 + 5963757538824515x + 3903857622444659 \( 53^{14}\cdot 89^{15} \) $C_2^3.C_8$ (as 16T104) $[8]$ (GRH)


Download all search results for