| 12.0.606355001344.1 |
x12 + 3x10 + 5x8 + 5x6 + 5x4 + 3x2 + 1 |
\( 2^{12}\cdot 23^{6} \) |
$S_4$ (as 12T9) |
Trivial
|
| 12.0.878013976576.1 |
x12 - 2x11 + 3x10 - 6x7 + 11x6 - 8x5 - 2x4 + 4x3 + 5x2 + 4x + 1 |
\( 2^{12}\cdot 11^{8} \) |
$S_4$ (as 12T9) |
Trivial
|
| 12.0.1857616347136.2 |
x12 + x10 + 2x8 + 3x6 + 2x4 + x2 + 1 |
\( 2^{20}\cdot 11^{6} \) |
$S_4$ (as 12T9) |
Trivial
|
| 12.0.3635215077376.3 |
x12 + 3x10 + 7x8 + 9x6 + 7x4 + 3x2 + 1 |
\( 2^{12}\cdot 31^{6} \) |
$S_4$ (as 12T9) |
Trivial
|
| 12.0.4347792138496.1 |
x12 - x11 + x10 + 4x9 - x8 - 3x7 + 2x6 - 3x5 - x4 + 4x3 + x2 - x + 1 |
\( 2^{8}\cdot 19^{8} \) |
$S_4$ (as 12T9) |
Trivial
|
| 12.0.5015306502144.3 |
x12 + 3x10 - 5x6 + 3x2 + 1 |
\( 2^{20}\cdot 3^{14} \) |
$S_4$ (as 12T9) |
Trivial
|
| 12.0.10497600000000.1 |
x12 - 2x11 + 3x10 - 6x9 + 4x8 + 4x7 + x6 + 4x5 + 4x4 - 6x3 + 3x2 - 2x + 1 |
\( 2^{12}\cdot 3^{8}\cdot 5^{8} \) |
$S_4$ (as 12T9) |
Trivial
|
| 12.4.10509215371264.1 |
x12 + 3x10 - 10x8 - 25x6 - 10x4 + 3x2 + 1 |
\( 2^{12}\cdot 37^{6} \) |
$S_4$ (as 12T9) |
Trivial
|
| 12.0.12244400640000.2 |
x12 - 6x11 + 9x10 + 10x9 - 36x8 + 18x7 + 25x6 - 30x5 + 12x4 - 6x3 + 3x2 + 3 |
\( 2^{12}\cdot 3^{14}\cdot 5^{4} \) |
$S_4$ (as 12T9) |
Trivial
|
| 12.0.12993941393521.1 |
x12 - 2x11 + 4x10 + 3x9 + 7x8 + 11x7 + 22x6 + 3x5 + 22x4 - 14x3 + 11x2 - 5x + 1 |
\( 11^{4}\cdot 31^{6} \) |
$S_4$ (as 12T9) |
$[2]$
|
| 12.0.15608694214656.2 |
x12 - 5x10 - 2x9 + 22x8 - 12x7 - 19x6 + 22x5 - 6x3 + 9x2 - 2x + 1 |
\( 2^{12}\cdot 3^{4}\cdot 19^{6} \) |
$S_4$ (as 12T9) |
Trivial
|
| 12.0.17422409568256.1 |
x12 - 2x11 + 9x10 - 20x9 + 32x8 - 50x7 + 37x6 - 14x5 + 6x4 - 6x3 + 19x2 - 2x + 1 |
\( 2^{12}\cdot 7^{4}\cdot 11^{6} \) |
$S_4$ (as 12T9) |
Trivial
|
| 12.0.19292185090369.1 |
x12 - 2x11 + 9x10 - 18x9 + 47x8 - 50x7 + 119x6 - 82x5 + 145x4 - 70x3 + 61x2 + 12x + 1 |
\( 19^{4}\cdot 23^{6} \) |
$S_4$ (as 12T9) |
$[2]$
|
| 12.0.25892303048704.1 |
x12 + 3x10 + 10x8 + 15x6 + 10x4 + 3x2 + 1 |
\( 2^{12}\cdot 43^{6} \) |
$S_4$ (as 12T9) |
Trivial
|
| 12.0.45137758519296.1 |
x12 - 6x11 + 21x10 - 50x9 + 90x8 - 126x7 + 141x6 - 126x5 + 87x4 - 44x3 + 12x2 + 2 |
\( 2^{20}\cdot 3^{16} \) |
$S_4$ (as 12T9) |
Trivial
|
| 12.0.45767944570401.1 |
x12 + 7x10 + 8x8 + 16x6 + 8x4 + 7x2 + 1 |
\( 3^{8}\cdot 17^{8} \) |
$S_4$ (as 12T9) |
Trivial
|
| 12.0.49331181715456.7 |
x12 + 3x10 + 4x8 + 3x6 + 4x4 + 3x2 + 1 |
\( 2^{20}\cdot 19^{6} \) |
$S_4$ (as 12T9) |
Trivial
|
| 12.0.83696735582464.1 |
x12 + 7x10 + 26x8 + 15x6 + 26x4 + 7x2 + 1 |
\( 2^{8}\cdot 83^{6} \) |
$S_4$ (as 12T9) |
$[2]$
|
| 12.0.104857600000000.2 |
x12 - 6x11 + 25x10 - 70x9 + 162x8 - 294x7 + 453x6 - 558x5 + 535x4 - 376x3 + 168x2 - 40x + 4 |
\( 2^{28}\cdot 5^{8} \) |
$S_4$ (as 12T9) |
Trivial
|
| 12.0.104857600000000.3 |
x12 - 4x10 + 4x8 - 4x6 + 11x4 - 4x2 + 4 |
\( 2^{28}\cdot 5^{8} \) |
$S_4$ (as 12T9) |
Trivial
|
| 12.0.128536820158464.1 |
x12 - 6x10 + 6x8 + 10x6 + 6x4 - 6x2 + 1 |
\( 2^{12}\cdot 3^{22} \) |
$S_4$ (as 12T9) |
Trivial
|
| 12.0.128536820158464.8 |
x12 + 3x10 + 15x8 - 26x6 + 24x4 - 24x2 + 16 |
\( 2^{12}\cdot 3^{22} \) |
$S_4$ (as 12T9) |
$[2]$
|
| 12.0.128536820158464.9 |
x12 + 3x10 + 6x8 + 7x6 - 30x4 - 33x2 + 49 |
\( 2^{12}\cdot 3^{22} \) |
$S_4$ (as 12T9) |
Trivial
|
| 12.4.144215816802121.1 |
x12 - 2x10 - 6x9 - 6x8 - 5x7 + 8x6 + 32x5 - 4x4 - 52x3 + x2 + 44x + 16 |
\( 229^{6} \) |
$S_4$ (as 12T9) |
Trivial
|
| 12.0.146830437604321.1 |
x12 - x10 - 12x9 + 14x8 + 7x7 + 11x6 - 24x5 + 7x4 + 5x3 + 13x2 + 2x + 4 |
\( 59^{8} \) |
$S_4$ (as 12T9) |
Trivial
|
| 12.0.154922431942656.1 |
x12 - 2x11 - x10 + 6x9 - 16x8 + 24x7 - x6 - 32x5 + 70x4 - 132x3 + 147x2 - 84x + 21 |
\( 2^{12}\cdot 3^{8}\cdot 7^{8} \) |
$S_4$ (as 12T9) |
$[3]$
|
| 12.0.172771465793536.1 |
x12 + 3x10 + 14x8 + 23x6 + 14x4 + 3x2 + 1 |
\( 2^{12}\cdot 59^{6} \) |
$S_4$ (as 12T9) |
Trivial
|
| 12.0.172771465793536.3 |
x12 + 3x10 - 5x8 + 18x6 + 168x4 + 88x2 + 16 |
\( 2^{12}\cdot 59^{6} \) |
$S_4$ (as 12T9) |
$[2]$
|
| 12.0.182401906640625.1 |
x12 + 5x10 + 13x8 + 25x6 + 13x4 + 5x2 + 1 |
\( 3^{4}\cdot 5^{8}\cdot 7^{8} \) |
$S_4$ (as 12T9) |
Trivial
|
| 12.0.188238400000000.1 |
x12 + 3x10 + x8 - 3x6 + x4 + 3x2 + 1 |
\( 2^{12}\cdot 5^{8}\cdot 7^{6} \) |
$S_4$ (as 12T9) |
Trivial
|
| 12.0.188238400000000.3 |
x12 - 6x9 - 8x8 - 6x7 + 48x6 + 24x5 - 36x4 + 12x3 + 28x2 - 12x + 4 |
\( 2^{12}\cdot 5^{8}\cdot 7^{6} \) |
$S_4$ (as 12T9) |
$[2]$
|
| 12.0.224771578003456.1 |
x12 - 4x11 + 17x10 - 42x9 + 95x8 - 156x7 + 219x6 - 238x5 + 218x4 - 152x3 + 82x2 - 28x + 4 |
\( 2^{20}\cdot 11^{8} \) |
$S_4$ (as 12T9) |
$[2]$
|
| 12.0.224771578003456.2 |
x12 - x10 - 8x8 + 11x6 + 44x4 - 121x2 + 121 |
\( 2^{20}\cdot 11^{8} \) |
$S_4$ (as 12T9) |
Trivial
|
| 12.4.288136807515649.1 |
x12 - 6x11 + 19x10 - 40x9 + 42x8 + 6x7 - 108x6 + 201x5 - 192x4 + 103x3 - 10x2 - 16x + 8 |
\( 257^{6} \) |
$S_4$ (as 12T9) |
Trivial
|
| 12.0.320761795710976.1 |
x12 - 14x8 + 73x4 + 4 |
\( 2^{12}\cdot 23^{8} \) |
$S_4$ (as 12T9) |
$[2]$
|
| 12.0.320761795710976.3 |
x12 - 7x10 + 41x8 - 115x6 + 253x4 - 529x2 + 529 |
\( 2^{12}\cdot 23^{8} \) |
$S_4$ (as 12T9) |
Trivial
|
| 12.0.320761795710976.5 |
x12 + 2x10 + 24x8 + 69x6 + 230x4 + 529x2 + 529 |
\( 2^{12}\cdot 23^{8} \) |
$S_4$ (as 12T9) |
Trivial
|
| 12.0.364679635048569.3 |
x12 - 5x11 + 15x10 - 39x9 + 82x8 - 144x7 + 225x6 - 298x5 + 340x4 - 396x3 + 396x2 - 315x + 225 |
\( 3^{6}\cdot 29^{8} \) |
$S_4$ (as 12T9) |
$[4]$
|
| 12.0.368947264000000.2 |
x12 - 3x10 - 2x9 + 2x8 - 36x7 - x6 + 120x5 + 100x4 + 16x3 - 5x2 - 4x + 1 |
\( 2^{12}\cdot 5^{6}\cdot 7^{8} \) |
$S_4$ (as 12T9) |
$[2]$
|
| 12.4.410516225440000.1 |
x12 - 9x10 + 2x8 - 13x6 + 2x4 - 9x2 + 1 |
\( 2^{8}\cdot 5^{4}\cdot 37^{6} \) |
$S_4$ (as 12T9) |
Trivial
|
| 12.0.419430400000000.6 |
x12 + 4x10 + 14x8 + 24x6 + 56x4 + 64x2 + 64 |
\( 2^{30}\cdot 5^{8} \) |
$S_4$ (as 12T9) |
Trivial
|
| 12.0.513710701744969.1 |
x12 + 2x10 - 10x9 + 10x8 + x7 + 22x6 - 34x5 + 24x4 - 32x3 + 47x2 - 66x + 36 |
\( 283^{6} \) |
$S_4$ (as 12T9) |
$[4]$
|
| 12.0.623717458640896.1 |
x12 - 6x11 + 20x10 - 38x9 + 39x8 + 24x7 - 128x6 + 168x5 - 9x4 - 130x3 + 140x2 - 18x + 1 |
\( 2^{20}\cdot 29^{6} \) |
$S_4$ (as 12T9) |
$[4]$
|
| 12.0.648669553496064.1 |
x12 - 4x11 + 13x10 - 28x9 + 62x8 - 112x7 + 187x6 - 236x5 + 218x4 - 134x3 + 43x2 - 2x + 1 |
\( 2^{12}\cdot 3^{8}\cdot 17^{6} \) |
$S_4$ (as 12T9) |
$[2]$
|
| 12.0.855355656503296.9 |
x12 + 10x8 - 23x4 + 64 |
\( 2^{20}\cdot 13^{8} \) |
$S_4$ (as 12T9) |
$[3]$
|
| 12.0.1025271882697689.1 |
x12 - 3x11 - x9 + 24x8 - 21x7 - 35x6 - 9x5 + 195x4 - 294x3 + 198x2 + 36x + 9 |
\( 3^{14}\cdot 11^{8} \) |
$S_4$ (as 12T9) |
$[4]$
|
| 12.0.1283918464548864.15 |
x12 + 6x10 - 4x9 + 12x8 - 24x7 + 22x6 + 12x5 + 21x4 - 24x3 - 12x2 + 6 |
\( 2^{28}\cdot 3^{14} \) |
$S_4$ (as 12T9) |
$[4]$
|
| 12.0.1283918464548864.31 |
x12 + 12x8 + 4x6 + 15x4 - 24x2 + 16 |
\( 2^{28}\cdot 3^{14} \) |
$S_4$ (as 12T9) |
$[2]$
|
| 12.0.1295686674939904.1 |
x12 - 2x11 + 11x10 - 2x9 + 3x8 + 48x7 - 20x6 + 16x5 + 87x4 - 54x3 + 21x2 - 6x + 1 |
\( 2^{28}\cdot 13^{6} \) |
$S_4$ (as 12T9) |
$[2]$
|
| 12.0.1295686674939904.26 |
x12 + 6x10 + 19x8 + 48x6 + 144x4 + 64x2 + 16 |
\( 2^{28}\cdot 13^{6} \) |
$S_4$ (as 12T9) |
$[2]$
|