Learn more about

Further refine search

Results (displaying all 36 matches)

Label Polynomial Discriminant Galois group Class group
12.4.24302560546048.1 x12 - x11 - 5x10 + 13x9 - 17x8 + 12x7 + 3x6 - 14x5 + 11x4 + 3x3 - 4x2 - 2x - 1 \( 2^{8}\cdot 37^{7} \) $A_4:C_4$ (as 12T27) Trivial
12.4.860934420000000.1 x12 - 6x11 + 12x10 - 5x9 - 21x8 + 48x7 - 59x6 + 54x5 - 39x4 + 21x3 - 9x2 + 3x + 1 \( 2^{8}\cdot 3^{16}\cdot 5^{7} \) $A_4:C_4$ (as 12T27) Trivial
12.0.6221455499788288.1 x12 - 4x11 + 14x10 - 32x9 + 55x8 - 76x7 + 76x6 - 60x5 + 27x4 + 8x3 + 6x2 + 44x + 17 \( 2^{16}\cdot 37^{7} \) $A_4:C_4$ (as 12T27) $[2]$
12.0.7748409780000000.1 x12 - 6x11 + 24x10 - 65x9 + 135x8 - 216x7 + 261x6 - 234x5 + 135x4 - 35x3 + 3x2 - 3x + 7 \( 2^{8}\cdot 3^{18}\cdot 5^{7} \) $A_4:C_4$ (as 12T27) $[2]$
12.0.694105431755676928.1 x12 + 19x10 + 130x8 + 391x6 + 518x4 + 271x2 + 37 \( 2^{8}\cdot 13^{4}\cdot 37^{7} \) $A_4:C_4$ (as 12T27) $[2]$
12.0.972102421841920000.1 x12 - 2x11 + 2x10 + 37x8 + 32x7 - 124x6 + 14x5 + 311x4 - 488x3 + 360x2 - 144x + 27 \( 2^{14}\cdot 5^{4}\cdot 37^{7} \) $A_4:C_4$ (as 12T27) $[2, 2]$
12.12.3443379683463546112.1 x12 - 6x11 - 8x10 + 78x9 - 3x8 - 296x7 + 129x6 + 378x5 - 201x4 - 138x3 + 56x2 + 6x - 1 \( 2^{8}\cdot 11^{8}\cdot 13^{7} \) $A_4:C_4$ (as 12T27) Trivial
12.12.6370770431783206912.1 x12 - 4x11 - 20x10 + 80x9 + 122x8 - 488x7 - 204x6 + 904x5 - 8x4 - 392x3 - 32x2 + 32x + 4 \( 2^{26}\cdot 37^{7} \) $A_4:C_4$ (as 12T27) Trivial (GRH)
12.4.16785484246943793152.2 x12 - 6x11 + 16x10 - 18x9 - 48x8 + 114x7 - 90x6 - 114x5 - 48x4 + 18x3 + 16x2 + 6x + 1 \( 2^{25}\cdot 29^{8} \) $A_4:C_4$ (as 12T27) Trivial
12.4.16785484246943793152.7 x12 - 5x11 - 10x10 + 38x9 + 76x8 + 60x7 + 84x6 - 516x5 - 1169x4 - 419x3 + 434x2 + 338x + 64 \( 2^{25}\cdot 29^{8} \) $A_4:C_4$ (as 12T27) Trivial (GRH)
12.0.268567747951100690432.3 x12 + 25x10 - 4x9 + 234x8 + 88x7 + 710x6 + 904x5 + 938x4 + 888x3 + 166x2 - 88x + 40 \( 2^{29}\cdot 29^{8} \) $A_4:C_4$ (as 12T27) $[2]$ (GRH)
12.0.268567747951100690432.33 x12 + x10 + 92x8 + 900x6 - 1004x4 - 284x2 + 512 \( 2^{29}\cdot 29^{8} \) $A_4:C_4$ (as 12T27) $[2]$ (GRH)
12.4.4297083967217611046912.67 x12 - 32x10 + 416x8 - 2712x6 + 8704x4 - 12032x2 + 2888 \( 2^{33}\cdot 29^{8} \) $A_4:C_4$ (as 12T27) $[4]$ (GRH)
12.0.4297083967217611046912.100 x12 + 32x10 + 416x8 + 2712x6 + 8704x4 + 12032x2 + 2888 \( 2^{33}\cdot 29^{8} \) $A_4:C_4$ (as 12T27) $[4]$ (GRH)
12.4.14116592251679730040832.6 x12 - x11 - 20x10 + 9x9 + 51x8 + 470x7 - 1456x6 - 2454x5 + 22006x4 - 53748x3 + 64152x2 - 36036x + 6268 \( 2^{25}\cdot 29^{10} \) $A_4:C_4$ (as 12T27) $[2]$ (GRH)
12.4.14116592251679730040832.9 x12 - x11 + 11x10 + 17x9 + 194x8 + 1050x7 + 1042x6 + 5030x5 - 2703x4 + 20679x3 - 75901x2 + 15209x + 14380 \( 2^{25}\cdot 29^{10} \) $A_4:C_4$ (as 12T27) $[2]$ (GRH)
12.4.17188335868870444187648.53 x12 + 8x10 - 68x9 + 37x8 + 256x7 - 616x6 + 1616x5 - 3272x4 + 3680x3 - 2608x2 + 192x + 936 \( 2^{35}\cdot 29^{8} \) $A_4:C_4$ (as 12T27) $[2]$ (GRH)
12.4.17188335868870444187648.69 x12 - 8x10 - 34x8 + 796x6 + 1249x4 - 13100x2 + 5000 \( 2^{35}\cdot 29^{8} \) $A_4:C_4$ (as 12T27) $[2]$ (GRH)
12.0.17188335868870444187648.70 x12 + 12x10 - 68x9 + 173x8 - 544x7 + 904x6 - 1728x5 + 2808x4 - 2176x3 + 5312x2 - 2352x + 3420 \( 2^{35}\cdot 29^{8} \) $A_4:C_4$ (as 12T27) $[2, 4]$ (GRH)
12.0.17188335868870444187648.75 x12 + 8x10 - 34x8 - 796x6 + 1249x4 + 13100x2 + 5000 \( 2^{35}\cdot 29^{8} \) $A_4:C_4$ (as 12T27) $[2, 10]$ (GRH)
12.0.68753343475481776750592.1 x12 + 44x10 + 240x8 + 412x6 + 237x4 + 48x2 + 2 \( 2^{37}\cdot 29^{8} \) $A_4:C_4$ (as 12T27) $[2, 58]$ (GRH)
12.12.68753343475481776750592.1 x12 - 44x10 + 240x8 - 412x6 + 237x4 - 48x2 + 2 \( 2^{37}\cdot 29^{8} \) $A_4:C_4$ (as 12T27) Trivial (GRH)
12.0.68753343475481776750592.77 x12 + 8x10 + 22x8 + 160x6 + 1964x4 + 5408x2 + 1800 \( 2^{37}\cdot 29^{8} \) $A_4:C_4$ (as 12T27) $[2, 4]$ (GRH)
12.4.68753343475481776750592.77 x12 - 8x10 + 22x8 - 160x6 + 1964x4 - 5408x2 + 1800 \( 2^{37}\cdot 29^{8} \) $A_4:C_4$ (as 12T27) $[2, 2]$ (GRH)
12.0.225865476026875680653312.17 x12 - 4x11 - 12x10 + 168x9 - 619x8 + 856x7 + 2232x6 - 26688x5 + 165147x4 - 693812x3 + 1741556x2 - 2274088x + 1191311 \( 2^{29}\cdot 29^{10} \) $A_4:C_4$ (as 12T27) $[2, 2]$ (GRH)
12.0.225865476026875680653312.27 x12 - 6x11 + 28x10 + 2x9 - 483x8 - 1916x7 + 11800x6 + 6772x5 + 983x4 - 133526x3 - 62692x2 - 298158x + 1956539 \( 2^{29}\cdot 29^{10} \) $A_4:C_4$ (as 12T27) $[2, 2]$ (GRH)
12.4.3613847616430010890452992.38 x12 + 348x8 - 8816x6 - 50460x4 - 1049568x2 + 9715232 \( 2^{33}\cdot 29^{10} \) $A_4:C_4$ (as 12T27) $[2, 4]$ (GRH)
12.0.3613847616430010890452992.69 x12 + 348x8 + 8816x6 - 50460x4 + 1049568x2 + 9715232 \( 2^{33}\cdot 29^{10} \) $A_4:C_4$ (as 12T27) $[2, 4]$ (GRH)
12.0.14455390465720043561811968.8 x12 + 58x10 + 464x8 + 1856x6 + 132037x4 + 52142x2 + 136242 \( 2^{35}\cdot 29^{10} \) $A_4:C_4$ (as 12T27) $[2, 2, 2]$ (GRH)
12.4.14455390465720043561811968.20 x12 - 58x10 + 464x8 - 1856x6 + 132037x4 - 52142x2 + 136242 \( 2^{35}\cdot 29^{10} \) $A_4:C_4$ (as 12T27) $[2, 2]$ (GRH)
12.0.14455390465720043561811968.48 x12 - 4x11 - 10x10 - 264x9 + 688x8 + 224x7 + 24180x6 + 5384x5 + 240035x4 + 190308x3 + 2102474x2 + 1524488x + 5328774 \( 2^{35}\cdot 29^{10} \) $A_4:C_4$ (as 12T27) $[2, 2, 4]$ (GRH)
12.4.14455390465720043561811968.78 x12 - 4x11 - 10x10 + 200x9 - 820x8 + 6720x7 - 1340x6 + 70576x5 + 98515x4 - 232396x3 - 66262x2 + 91888x + 32446 \( 2^{35}\cdot 29^{10} \) $A_4:C_4$ (as 12T27) $[2, 2]$ (GRH)
12.12.57821561862880174247247872.1 x12 - 116x10 + 4988x8 - 98716x6 + 899029x4 - 3283264x2 + 2558322 \( 2^{37}\cdot 29^{10} \) $A_4:C_4$ (as 12T27) $[2]$ (GRH)
12.0.57821561862880174247247872.20 x12 + 116x10 + 4988x8 + 98716x6 + 899029x4 + 3283264x2 + 2558322 \( 2^{37}\cdot 29^{10} \) $A_4:C_4$ (as 12T27) $[2, 2, 842]$ (GRH)
12.0.57821561862880174247247872.44 x12 - 4x11 + 6x10 - 124x9 + 1085x8 + 880x7 + 17700x6 + 21040x5 + 57389x4 + 68732x3 + 87266x2 + 49556x + 9213 \( 2^{37}\cdot 29^{10} \) $A_4:C_4$ (as 12T27) $[2, 2, 4]$ (GRH)
12.4.57821561862880174247247872.65 x12 - 4x11 + 6x10 - 124x9 + 1085x8 + 2736x7 - 10604x6 - 23968x5 - 18707x4 + 6556x3 + 11170x2 - 1020x + 16173 \( 2^{37}\cdot 29^{10} \) $A_4:C_4$ (as 12T27) $[2, 2, 2]$ (GRH)


Download all search results for