| 12.0.85282689024.1 |
x12 + x10 - 4x9 + x8 - 4x7 + 6x6 - 4x5 + 5x4 - 4x3 + 4x2 - 2x + 1 |
\( 2^{12}\cdot 3^{6}\cdot 13^{4} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.110075314176.1 |
x12 - 4x11 + 8x10 - 12x9 + 13x8 - 8x7 + 4x5 - 2x4 + 1 |
\( 2^{24}\cdot 3^{8} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.114709561344.1 |
x12 + x10 - 6x8 - 3x6 + 14x4 - 7x2 + 1 |
\( 2^{16}\cdot 3^{6}\cdot 7^{4} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.139314069504.1 |
x12 - 2x11 + x10 - 2x9 + 3x8 + 2x7 - 6x5 + x4 + 4x3 - 2x2 + 1 |
\( 2^{18}\cdot 3^{12} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.153664000000.1 |
x12 + x10 - 4x9 + 4x8 - 6x7 + 12x6 - 12x5 + 12x4 - 16x3 + 14x2 - 6x + 1 |
\( 2^{12}\cdot 5^{6}\cdot 7^{4} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.419904000000.1 |
x12 - 6x11 + 19x10 - 40x9 + 62x8 - 74x7 + 67x6 - 44x5 + 21x4 - 8x3 + 4x2 - 2x + 1 |
\( 2^{12}\cdot 3^{8}\cdot 5^{6} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.458838245376.1 |
x12 - 6x11 + 17x10 - 28x9 + 24x8 - 20x6 + 18x5 - 6x4 - 4x3 + 8x2 - 4x + 1 |
\( 2^{18}\cdot 3^{6}\cdot 7^{4} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.479174066176.4 |
x12 - 4x10 + 9x8 - 12x6 + 10x4 - 4x2 + 1 |
\( 2^{24}\cdot 13^{4} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.941480149401.1 |
x12 + x10 - 4x9 - 2x8 - 3x7 + 9x6 + 4x5 + 12x4 - 7x3 - 2x2 - x + 1 |
\( 3^{12}\cdot 11^{6} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
(GRH)
|
| 12.0.1075850221824.1 |
x12 - 4x11 + 3x10 + 4x9 - 6x7 - 17x6 + 30x5 + 6x4 - 34x3 + 25x2 - 8x + 1 |
\( 2^{8}\cdot 3^{6}\cdot 7^{8} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.1586874322944.3 |
x12 - 2x9 + 5x6 - 4x3 + 1 |
\( 2^{12}\cdot 3^{18} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.2186423566336.3 |
x12 - 7x8 - 4x7 - 4x5 + 10x4 + 16x3 + 8x2 + 12x + 9 |
\( 2^{24}\cdot 19^{4} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.3341233033216.1 |
x12 - 6x11 + 16x10 - 18x9 - 11x8 + 68x7 - 89x6 + 20x5 + 86x4 - 102x3 + 27x2 + 8x + 1 |
\( 2^{12}\cdot 13^{8} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.6053445140625.2 |
x12 - x9 + 2x6 + x3 + 1 |
\( 3^{18}\cdot 5^{6} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.8916100448256.2 |
x12 - 4x11 + 4x10 + 12x9 - 37x8 + 32x7 + 22x6 - 80x5 + 88x4 - 48x3 + 10x2 + 1 |
\( 2^{24}\cdot 3^{12} \) |
$C_6\times S_3$ (as 12T18) |
$[2]$
|
| 12.0.12381017456889.1 |
x12 - 2x11 + 5x10 - 11x9 + 18x8 - 43x7 + 54x6 - 60x5 + 172x4 - 261x3 + 191x2 - 106x + 43 |
\( 3^{6}\cdot 19^{8} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.25389989167104.5 |
x12 - 2x9 + 2x6 - 4x3 + 4 |
\( 2^{16}\cdot 3^{18} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.27572864474169.1 |
x12 - 2x9 + 29x6 - 28x3 + 7 |
\( 3^{14}\cdot 7^{8} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.45579633110361.3 |
x12 - 3x9 + 2x6 + 3x3 + 1 |
\( 3^{18}\cdot 7^{6} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.101559956668416.7 |
x12 - 2x9 + 5x6 + 2x3 + 1 |
\( 2^{18}\cdot 3^{18} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.128536820158464.6 |
x12 + 3x6 + 9 |
\( 2^{12}\cdot 3^{22} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.133448704000000.1 |
x12 + 13x10 + 58x8 + 105x6 + 74x4 + 17x2 + 1 |
\( 2^{16}\cdot 5^{6}\cdot 19^{4} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.264347016597504.1 |
x12 - 6x11 + 31x10 - 100x9 + 274x8 - 562x7 + 975x6 - 1312x5 + 1457x4 - 1216x3 + 772x2 - 314x + 61 |
\( 2^{12}\cdot 3^{6}\cdot 97^{4} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.271210141834681.1 |
x12 - 2x11 + 3x10 + 2x9 + 10x8 + 23x6 + 20x5 + 42x4 + 22x3 + 18x2 + x + 23 |
\( 7^{8}\cdot 19^{6} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.275417656786944.2 |
x12 - 4x11 + 8x10 - 18x9 + 41x8 - 112x7 + 270x6 - 496x5 + 841x4 - 1136x3 + 1218x2 - 970x + 361 |
\( 2^{16}\cdot 3^{6}\cdot 7^{8} \) |
$C_6\times S_3$ (as 12T18) |
$[2]$
|
| 12.0.722204136308736.17 |
x12 - 12x10 + 54x8 - 116x6 + 129x4 - 72x2 + 25 |
\( 2^{24}\cdot 3^{16} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.1129900996000000.1 |
x12 - 4x11 + 3x10 + 12x9 - 38x8 + 38x7 + 27x6 - 150x5 + 284x4 - 334x3 + 325x2 - 192x + 99 |
\( 2^{8}\cdot 5^{6}\cdot 7^{10} \) |
$C_6\times S_3$ (as 12T18) |
$[3]$
|
| 12.0.1549681956000000.1 |
x12 - 6x9 + 20x6 - 48x3 + 64 |
\( 2^{8}\cdot 3^{18}\cdot 5^{6} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.1624959306694656.13 |
x12 - 2x6 + 4 |
\( 2^{22}\cdot 3^{18} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.1624959306694656.14 |
x12 + 2x6 + 4 |
\( 2^{22}\cdot 3^{18} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.2056589122535424.14 |
x12 - 6x9 + 18x6 - 36x3 + 36 |
\( 2^{16}\cdot 3^{22} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.2056589122535424.23 |
x12 + 12x6 + 144 |
\( 2^{16}\cdot 3^{22} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.12.2474477972015625.1 |
x12 - 17x10 - 11x9 + 73x8 + 62x7 - 102x6 - 87x5 + 52x4 + 43x3 - 5x2 - 7x - 1 |
\( 3^{8}\cdot 5^{6}\cdot 17^{6} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.2560597521908409.1 |
x12 - 2x11 + 2x10 + 6x9 - 13x8 + 55x7 + 51x6 - 239x5 - 182x4 + 389x3 + 642x2 + 634x + 469 |
\( 3^{6}\cdot 37^{8} \) |
$C_6\times S_3$ (as 12T18) |
$[4]$
|
| 12.0.2758547353515625.1 |
x12 - 5x11 + 13x10 - 40x9 + 100x8 - 195x7 + 370x6 - 590x5 + 855x4 - 870x3 + 908x2 - 400x + 64 |
\( 5^{10}\cdot 7^{10} \) |
$C_6\times S_3$ (as 12T18) |
$[3]$
|
| 12.0.4452139149819904.6 |
x12 - 4x11 + 10x10 - 8x9 + 16x8 - 26x7 + 74x6 - 12x5 + 72x4 - 4x3 + 207x2 + 154x + 139 |
\( 2^{18}\cdot 19^{8} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.12.6146560000000000.1 |
x12 - 4x11 - 8x10 + 50x9 - 15x8 - 164x7 + 151x6 + 162x5 - 220x4 - 10x3 + 77x2 - 18x - 1 |
\( 2^{18}\cdot 5^{10}\cdot 7^{4} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.6499837226778624.26 |
x12 - 12x10 + 54x8 - 108x6 + 81x4 + 9 |
\( 2^{24}\cdot 3^{18} \) |
$C_6\times S_3$ (as 12T18) |
$[2]$
|
| 12.0.6499837226778624.37 |
x12 - 12x10 - 4x9 + 54x8 + 36x7 - 104x6 - 108x5 + 57x4 + 96x3 + 36x2 + 36x + 33 |
\( 2^{24}\cdot 3^{18} \) |
$C_6\times S_3$ (as 12T18) |
$[2]$
|
| 12.0.6499837226778624.40 |
x12 - 12x10 + 54x8 - 118x6 + 141x4 - 90x2 + 49 |
\( 2^{24}\cdot 3^{18} \) |
$C_6\times S_3$ (as 12T18) |
$[2]$
|
| 12.0.8226356490141696.20 |
x12 - 18x9 + 147x6 + 126x3 + 27 |
\( 2^{18}\cdot 3^{22} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.8226356490141696.34 |
x12 - 24x6 + 576 |
\( 2^{18}\cdot 3^{22} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.8226356490141696.35 |
x12 + 24x6 + 576 |
\( 2^{18}\cdot 3^{22} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.11668386076252416.1 |
x12 - 2x9 - 4x6 - 16x3 + 64 |
\( 2^{8}\cdot 3^{18}\cdot 7^{6} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.13685690504052736.30 |
x12 + 78x8 - 312x6 + 2197x4 - 8788x2 + 28561 |
\( 2^{24}\cdot 13^{8} \) |
$C_6\times S_3$ (as 12T18) |
$[6]$
|
| 12.0.36138776487264256.6 |
x12 - 2x11 + 13x10 - 10x9 + 61x8 - 30x7 + 202x6 - 74x5 + 347x4 + 36x3 + 130x2 + 132x + 27 |
\( 2^{18}\cdot 13^{10} \) |
$C_6\times S_3$ (as 12T18) |
$[9]$
|
| 12.0.57352136505929721.2 |
x12 - 3x9 + x6 - 24x3 + 64 |
\( 3^{18}\cdot 23^{6} \) |
$C_6\times S_3$ (as 12T18) |
$[3]$
|
| 12.0.131621703842267136.40 |
x12 - 6x6 + 36 |
\( 2^{22}\cdot 3^{22} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.131621703842267136.41 |
x12 + 6x6 + 36 |
\( 2^{22}\cdot 3^{22} \) |
$C_6\times S_3$ (as 12T18) |
Trivial
|
| 12.0.131621703842267136.96 |
x12 - 18x6 + 324 |
\( 2^{22}\cdot 3^{22} \) |
$C_6\times S_3$ (as 12T18) |
$[3]$
|