Learn more about

Further refine search

Results (displaying all 30 matches)

Label Polynomial Discriminant Galois group Class group
9.3.34040472776891254826249629376.1 x9 - 4x8 - 585x7 + 14453x6 - 172719x5 + 1243212x4 - 5630958x3 + 15712707x2 - 24689313x + 16722389 \( -\,2^{6}\cdot 13^{7}\cdot 41^{3}\cdot 103^{7} \) $S_3\times C_3$ (as 9T4) $[6, 6, 48204]$ (GRH)
9.3.82574932050079036833262643392.1 x9 - 2x8 - 657x7 + 15741x6 - 187083x5 + 1347288x4 - 6116310x3 + 17111595x2 - 26952291x + 18292829 \( -\,2^{6}\cdot 43^{3}\cdot 1489^{7} \) $S_3\times C_3$ (as 9T4) $[5, 557080]$ (GRH)
9.3.213041816736095167667855780544.1 x9 - 3x8 - 957x7 + 27672x6 - 392592x5 + 3369291x4 - 18273543x3 + 61327815x2 - 116376726x + 95533631 \( -\,2^{6}\cdot 3^{15}\cdot 17^{3}\cdot 241^{7} \) $S_3\times C_3$ (as 9T4) $[2, 6, 228438]$ (GRH)
9.3.267412527740852450040686757568.1 x9 - 1733x7 - 5755x6 + 911599x5 + 7542876x4 - 118327042x3 - 1233693595x2 - 1697154363x - 28351855531 \( -\,2^{6}\cdot 7^{6}\cdot 109^{3}\cdot 223^{7} \) $S_3\times C_3$ (as 9T4) $[3, 3, 15, 30, 390]$ (GRH)
9.3.1173365778534963459955218936512.1 x9 - 2x8 + 1847x7 + 7383x6 - 1298809x5 + 76766070x4 - 2514365676x3 + 54052096969x2 - 1050669706501x + 6529374868801 \( -\,2^{6}\cdot 11^{3}\cdot 13^{6}\cdot 433^{7} \) $S_3\times C_3$ (as 9T4) $[2, 2, 2, 6, 39102]$ (GRH)
9.3.1503738871438861505094232529088.1 x9 - 3x8 - 363x7 + 938x6 + 166422x5 - 344955x4 - 11546887x3 + 26836503x2 - 7301815632x + 3338141159 \( -\,2^{6}\cdot 3^{9}\cdot 17^{3}\cdot 19^{7}\cdot 43^{7} \) $S_3\times C_3$ (as 9T4) $[6, 18, 16668]$ (GRH)
9.3.2008995096296530754176831359488.1 x9 - 4x8 - 2929x7 + 89835x6 - 997717x5 + 8346300x4 - 39898436x3 + 136057949x2 - 264004739x + 338501389 \( -\,2^{9}\cdot 13^{7}\cdot 673^{7} \) $S_3\times C_3$ (as 9T4) $[2, 78, 8034]$ (GRH)
9.3.5448218194495564195017822122176.1 x9 - 2x8 - 4537x7 + 105119x6 + 350593x5 + 10479330x4 + 34683810x3 + 270300503x2 + 453760859x + 1786687487 \( -\,2^{6}\cdot 37^{7}\cdot 367^{7} \) $S_3\times C_3$ (as 9T4) $[2, 2, 2, 6, 87594]$ (GRH)
9.3.7609973398533735614236179064000.1 x9 - x8 - 1133x7 - 31456x6 - 442928x5 - 3804907x4 - 20712287x3 - 69811591x2 - 133016690x - 109584551 \( -\,2^{6}\cdot 5^{3}\cdot 11^{3}\cdot 2557^{7} \) $S_3\times C_3$ (as 9T4) $[7, 1322678]$ (GRH)
9.3.9332168603347626532838482899456.1 x9 - 4971x7 - 77879x6 + 8351280x5 + 263502768x4 - 2658729408x3 - 226153616832x2 - 3605805918720x - 19229559127552 \( -\,2^{9}\cdot 3^{12}\cdot 1657^{7} \) $S_3\times C_3$ (as 9T4) $[6, 394134]$ (GRH)
9.3.17612583005720393581692774758103.1 x9 - 105868x6 - 10923309x5 + 701065458x4 - 21202445249x3 + 1723063587408x2 - 68444429376636x + 829996847988696 \( -\,3^{13}\cdot 19^{7}\cdot 199^{7} \) $S_3\times C_3$ (as 9T4) $[3, 3, 3, 3, 18, 1026]$ (GRH)
9.3.19979186107835112727319352074752.1 x9 - 4x8 - 1265x7 - 34315x6 - 481373x5 - 4141132x4 - 22610876x3 - 76459813x2 - 146120363x - 120689741 \( -\,2^{9}\cdot 19^{7}\cdot 29^{3}\cdot 151^{7} \) $S_3\times C_3$ (as 9T4) $[3, 3, 3, 41274]$ (GRH)
9.3.20883971697881478397156686693888.2 x9 - 3x8 - 3531x7 + 5504x6 + 3608922x5 - 8520087x4 - 1188199569x3 - 589727619x2 + 126031741812x + 604675550673 \( -\,2^{9}\cdot 3^{9}\cdot 13^{7}\cdot 229^{7} \) $S_3\times C_3$ (as 9T4) $[9, 18, 17514]$ (GRH)
9.3.22921419423740655976422475774464.2 x9 - 3x8 - 1677x7 - 53598x6 - 873462x5 - 8699295x4 - 55041225x3 - 216277977x2 - 481849122x - 465414193 \( -\,2^{9}\cdot 3^{15}\cdot 11^{3}\cdot 421^{7} \) $S_3\times C_3$ (as 9T4) $[2380434]$ (GRH)
9.3.28264732215528487463866635499008.1 x9 - 6573x7 - 37247x6 + 27468567x5 - 1092209118x4 - 4817198330x3 + 1975172308893x2 - 35660464317639x - 545668039805931 \( -\,2^{9}\cdot 3^{13}\cdot 7^{6}\cdot 313^{7} \) $S_3\times C_3$ (as 9T4) $[3, 3, 3, 81669]$ (GRH)
9.3.40433066836446159992135460998464.1 x9 - 2x8 - 1846x7 + 1853x6 + 509545x5 + 8356431x4 + 67633779x3 + 336454694x2 + 971295101x + 1463451053 \( -\,2^{6}\cdot 19^{3}\cdot 5119^{7} \) $S_3\times C_3$ (as 9T4) $[3298369]$ (GRH)
9.3.56441011007883515049554102854848.2 x9 - 3x8 - 5325x7 - 83022x6 + 9637350x5 + 323501475x4 - 2999023125x3 - 298733761875x2 - 5200565718750x - 30378244515625 \( -\,2^{6}\cdot 3^{15}\cdot 1801^{7} \) $S_3\times C_3$ (as 9T4) $[6, 1394946]$ (GRH)
9.3.59147277154624204019933880238272.1 x9 - 3783x7 - 51701x6 + 4846023x5 + 133517202x4 - 1180417056x3 - 87655420125x2 - 1222267178223x - 5703368086871 \( -\,2^{6}\cdot 3^{12}\cdot 7^{3}\cdot 13^{7}\cdot 97^{7} \) $S_3\times C_3$ (as 9T4) $[3, 3, 3, 3, 18, 6714]$ (GRH)
9.3.345646515675090906115747805101568.1 x9 - 8054x7 - 86135x6 + 21555397x5 + 463533973x4 - 16652946295x3 - 613128224240x2 - 6510682901835x - 24496392693493 \( -\,2^{9}\cdot 7^{6}\cdot 13^{3}\cdot 31^{7}\cdot 37^{7} \) $S_3\times C_3$ (as 9T4) $[3, 6, 6, 21642]$ (GRH)
9.3.549541385991283777839563597275648.2 x9 - x8 - 2519x7 + 3436x6 + 963642x5 - 19472713x4 + 188386031x3 - 1079663137x2 + 3548644260x - 5719338877 \( -\,2^{9}\cdot 7^{7}\cdot 11^{3}\cdot 997^{7} \) $S_3\times C_3$ (as 9T4) $[3, 9, 312291]$ (GRH)
9.3.593788209494622146865757091776000.1 x9 - 2x8 - 1905x7 + 72153x6 - 1348029x5 + 15250290x4 - 109361844x3 + 487467741x2 - 1234577043x + 1358906711 \( -\,2^{9}\cdot 5^{3}\cdot 7^{3}\cdot 4297^{7} \) $S_3\times C_3$ (as 9T4) $[2, 4, 334684]$ (GRH)
9.3.606691308877698193179936850417984.1 x9 - x8 - 3934x7 - 139731x6 - 2019573x5 - 19257097x4 - 113121209x3 - 421969970x2 - 911815232x - 999780629 \( -\,2^{6}\cdot 7^{3}\cdot 31^{7}\cdot 373^{7} \) $S_3\times C_3$ (as 9T4) $[3, 21, 73017]$ (GRH)
9.3.1208245707570684710118650479647296.1 x9 - x8 - 2766x7 + 499x6 + 1169751x5 + 23125507x4 + 223678667x3 + 1292801328x2 + 4301447904x + 7077293973 \( -\,2^{6}\cdot 23^{3}\cdot 79^{7}\cdot 97^{7} \) $S_3\times C_3$ (as 9T4) $[3, 3, 718263]$ (GRH)
9.1.13123898043587859950264152870898688.1 x9 - 141x7 - 40230x6 + 6627x5 - 1944954x4 + 586167805x3 - 88868070x2 + 51437595240x - 2410089265226 \( 2^{10}\cdot 3^{9}\cdot 7^{7}\cdot 967^{7} \) $S_3^2$ (as 9T8) $[3, 3, 3, 6, 12, 684]$ (GRH)
9.1.251587267509755082934044273105580608.1 x9 - 3x8 + 4x7 + 4367x6 - 454490x5 - 9353495x4 + 76671981x3 + 3176369294x2 + 27294462152x + 77039823246 \( 2^{6}\cdot 3^{3}\cdot 37^{7}\cdot 1063^{7} \) $S_3^2$ (as 9T8) $[3, 3, 3, 18, 18, 378]$ (GRH)
9.3.6368591954731741019481223481451798528.1 x9 - 281736x6 - 38943592506x3 - 828253479126528 \( -\,2^{13}\cdot 3^{18}\cdot 7^{6}\cdot 13^{7}\cdot 43^{7} \) $S_3^2$ (as 9T8) $[3, 3, 3, 3, 3, 6, 696]$ (GRH)
9.1.11159851600286913736565911449075667392.1 x9 - 533988x6 + 95000870601x3 - 5639371800543936 \( 2^{6}\cdot 3^{15}\cdot 7^{7}\cdot 13^{6}\cdot 163^{7} \) $S_3^2$ (as 9T8) $[3, 3, 3, 3, 18, 18, 72]$ (GRH)
9.1.24025177795176030015470943785840136768.1 x9 - 3x8 + 96x7 + 88067x6 - 173532x5 - 2562525x4 + 2594285657x3 - 2509502424x2 - 158464296066x + 25539385643706 \( 2^{6}\cdot 3^{9}\cdot 13^{7}\cdot 31^{7}\cdot 73^{7} \) $S_3^2$ (as 9T8) $[3, 3, 3, 3, 18, 18, 162]$ (GRH)
9.3.51045760796164622552783894927556641472.1 x9 - 5184x6 - 71105040x3 - 5159780352 \( -\,2^{6}\cdot 3^{15}\cdot 163^{6}\cdot 379^{6} \) $S_3\times C_3$ (as 9T4) $[3, 3, 3, 9, 23751]$ (GRH)
9.1.120426448093662321424207466113182837696.1 x9 - 3x8 + 3x7 + 110888x6 - 221778x5 + 222000x4 + 4172715959x3 - 4172790033x2 + 4131662535x + 50499821168978 \( 2^{6}\cdot 3^{9}\cdot 7^{7}\cdot 11^{7}\cdot 13^{7}\cdot 37^{7} \) $S_3^2$ (as 9T8) $[3, 3, 3, 3, 3, 18, 234]$ (GRH)


Download all search results for