| 7.1.7845011803.1 |
x7 - 3x6 + 5x5 - 8x4 + 55x3 - 131x2 + 147x - 18 |
\( -\,1987^{3} \) |
$D_{7}$ (as 7T2) |
$[13]$
|
| 7.1.8096384512.1 |
x7 - 3x6 + 6x5 - 14x4 + 15x3 - x2 + 82x - 134 |
\( -\,2^{9}\cdot 251^{3} \) |
$D_{7}$ (as 7T2) |
$[13]$
|
| 7.1.56225905191.1 |
x7 - 2x6 + 7x5 - 20x4 + 103x3 + 112x2 + 111x + 51 |
\( -\,3^{3}\cdot 1277^{3} \) |
$D_{7}$ (as 7T2) |
$[13]$
|
| 7.1.58575010032.2 |
x7 - 3x6 + 14x5 - 28x4 + 40x3 - 104x2 + 96x + 128 |
\( -\,2^{4}\cdot 3^{6}\cdot 7^{3}\cdot 11^{4} \) |
$S_7$ (as 7T7) |
$[11]$
|
| 7.1.63425726272.1 |
x7 - x6 + 7x5 + x4 + 116x3 + 44x2 + 272x + 96 |
\( -\,2^{6}\cdot 997^{3} \) |
$D_{7}$ (as 7T2) |
$[13]$
|
| 7.1.207029048256.1 |
x7 - x6 + 15x5 - 17x4 + 23x3 - 9x2 + 5x + 1 |
\( -\,2^{6}\cdot 3^{8}\cdot 79^{3} \) |
$F_7$ (as 7T4) |
$[14]$
|
| 7.1.243906324992.1 |
x7 - 2x6 + 4x5 - 40x4 + 196x3 - 648x2 + 1056x - 704 |
\( -\,2^{9}\cdot 11^{3}\cdot 71^{3} \) |
$D_{7}$ (as 7T2) |
$[13]$
|
| 7.1.247200192576.1 |
x7 - 3x6 + 4x5 + 18x4 - 53x3 + 87x2 - 72x + 162 |
\( -\,2^{6}\cdot 3^{3}\cdot 523^{3} \) |
$D_{7}$ (as 7T2) |
$[43]$
|
| 7.1.291698067968.1 |
x7 - 3x6 - 4x5 + 40x4 - 53x3 - 77x2 + 328x - 200 |
\( -\,2^{9}\cdot 829^{3} \) |
$D_{7}$ (as 7T2) |
$[13]$
|
| 7.1.467107946479.1 |
x7 - 3x6 + 20x5 - 105x4 + 234x3 - 362x2 + 545x - 425 |
\( -\,7759^{3} \) |
$D_{7}$ (as 7T2) |
$[29]$
|
| 7.1.489117612439.1 |
x7 - 3x6 + 3x5 + 16x4 - 80x3 - 15x2 + 90x - 551 |
\( -\,7879^{3} \) |
$D_{7}$ (as 7T2) |
$[13]$
|
| 7.1.648337611375.1 |
x7 - x6 - 5x5 + 14x4 - 98x3 + 155x2 - 78x + 417 |
\( -\,3^{3}\cdot 5^{3}\cdot 577^{3} \) |
$D_{7}$ (as 7T2) |
$[13]$
|
| 7.1.757303595875.1 |
x7 - 3x6 + 9x5 - 10x4 + 16x3 + 344x2 + 1040x + 960 |
\( -\,5^{3}\cdot 1823^{3} \) |
$D_{7}$ (as 7T2) |
$[29]$
|
| 7.1.1722980109375.2 |
x7 - 3x6 - 9x5 + 120x4 - 480x3 + 1101x2 - 1268x + 561 |
\( -\,3^{8}\cdot 5^{6}\cdot 7^{5} \) |
$F_7$ (as 7T4) |
$[14]$
|
| 7.3.1865365934656.1 |
x7 - 2x6 + 10x5 - 2x4 - 16x3 + 16x2 + 4x - 12 |
\( 2^{6}\cdot 7^{2}\cdot 29^{6} \) |
$\GL(3,2)$ (as 7T5) |
$[14]$
|
| 7.1.1962515008000.1 |
x7 - 2x6 - 15x5 + 8x4 + 258x3 + 768x2 + 400x - 2560 |
\( -\,2^{9}\cdot 5^{3}\cdot 313^{3} \) |
$D_{7}$ (as 7T2) |
$[13]$
|
| 7.1.2843371995463.1 |
x7 + 13x5 - 71x4 + 25x3 + 192x2 - 50x - 275 |
\( -\,31^{3}\cdot 457^{3} \) |
$D_{7}$ (as 7T2) |
$[41]$
|
| 7.1.3053042381843.1 |
x7 + 9x5 - 78x4 - 17x3 + 150x2 + 196x - 344 |
\( -\,89^{3}\cdot 163^{3} \) |
$D_{7}$ (as 7T2) |
$[13]$
|
| 7.1.3372300719936.1 |
x7 - 3x6 + 10x5 - 50x4 + 89x3 + 189x2 - 868x + 1144 |
\( -\,2^{6}\cdot 23^{3}\cdot 163^{3} \) |
$D_{7}$ (as 7T2) |
$[29]$
|
| 7.1.3437481658688.1 |
x7 - 14x5 - 42x4 + 329x3 + 854x2 + 336x - 464 |
\( -\,2^{6}\cdot 7^{9}\cdot 11^{3} \) |
$D_{7}$ (as 7T2) |
$[43]$
|
| 7.3.3543369523456.4 |
x7 - 21x5 - 70x4 + 238x3 + 1092x2 - 2240x + 736 |
\( 2^{8}\cdot 7^{12} \) |
$\GL(3,2)$ (as 7T5) |
$[14]$
|
| 7.1.6807097609375.1 |
x7 - 35x4 + 70x3 - 70x + 35 |
\( -\,5^{6}\cdot 7^{7}\cdot 23^{2} \) |
$S_7$ (as 7T7) |
$[12]$
|
| 7.1.7143337990979.1 |
x7 - 3x6 - 30x5 + 230x4 - 471x3 + 269x2 - 268x + 784 |
\( -\,19259^{3} \) |
$D_{7}$ (as 7T2) |
$[29]$
|
| 7.1.7597737208179.1 |
x7 - 3x6 + 17x5 - 76x4 + 99x3 - 839x2 + 5355x - 6858 |
\( -\,3^{3}\cdot 6553^{3} \) |
$D_{7}$ (as 7T2) |
$[13]$
|
| 7.1.8202077997463.1 |
x7 - 2x6 + 8x5 - 50x4 + 99x3 - 105x2 - 61x - 21 |
\( -\,7^{3}\cdot 43^{3}\cdot 67^{3} \) |
$D_{7}$ (as 7T2) |
$[13]$
|
| 7.1.8559770978816.1 |
x7 - 3x6 - 9x5 - 21x4 + 554x3 - 938x2 - 608x - 328 |
\( -\,2^{9}\cdot 2557^{3} \) |
$D_{7}$ (as 7T2) |
$[71]$
|
| 7.1.8818423496000.1 |
x7 - x6 + 13x5 - 173x4 + 456x3 - 56x2 - 880x - 1360 |
\( -\,2^{6}\cdot 5^{3}\cdot 1033^{3} \) |
$D_{7}$ (as 7T2) |
$[29]$
|
| 7.1.9333955741375.1 |
x7 - 3x6 - 3x5 + 108x4 - 119x3 - 1435x2 + 3355x - 761 |
\( -\,5^{3}\cdot 4211^{3} \) |
$D_{7}$ (as 7T2) |
$[13]$
|
| 7.1.9397938459727.1 |
x7 - 32x5 - 70x4 + 532x3 + 750x2 - 1727x - 5149 |
\( -\,47^{3}\cdot 449^{3} \) |
$D_{7}$ (as 7T2) |
$[43]$
|
| 7.1.9760921523136.1 |
x7 + 14x5 + 56x3 + 56x - 286 |
\( -\,2^{6}\cdot 3^{3}\cdot 7^{7}\cdot 19^{3} \) |
$F_7$ (as 7T4) |
$[21]$
|
| 7.1.10354530166336.1 |
x7 - 3x6 + 38x5 + 30x4 + 33x3 + 1957x2 - 2116x + 5956 |
\( -\,2^{6}\cdot 5449^{3} \) |
$D_{7}$ (as 7T2) |
$[29]$
|
| 7.1.10927746713871.1 |
x7 - 5x5 - 54x4 - 20x3 - 483x2 - 2259x - 2187 |
\( -\,3^{3}\cdot 13^{3}\cdot 569^{3} \) |
$D_{7}$ (as 7T2) |
$[13]$
|
| 7.1.11328469648579.1 |
x7 - 3x6 - 26x5 - 64x4 - 170x3 - 222x2 - 41x - 331 |
\( -\,37^{3}\cdot 607^{3} \) |
$D_{7}$ (as 7T2) |
$[13]$
|
| 7.1.12135287592000.1 |
x7 - 2x6 - 11x5 + 52x4 - 236x3 + 712x2 - 1644x + 2928 |
\( -\,2^{6}\cdot 3^{3}\cdot 5^{3}\cdot 383^{3} \) |
$D_{7}$ (as 7T2) |
$[13]$
|
| 7.1.12184465350331.1 |
x7 - 2x6 - 4x5 - 78x4 - 146x3 - 408x2 - 375x - 512 |
\( -\,23011^{3} \) |
$D_{7}$ (as 7T2) |
$[3, 3, 3]$
|
| 7.1.12280025186911.1 |
x7 - 2x6 - 18x5 + 81x4 - 233x3 + 523x2 - 462x + 657 |
\( -\,23071^{3} \) |
$D_{7}$ (as 7T2) |
$[13]$
|
| 7.3.13519130324569.2 |
x7 - 8x5 - 25x4 - 17x3 + 32x2 + 96x + 64 |
\( 631^{2}\cdot 5827^{2} \) |
$\GL(3,2)$ (as 7T5) |
$[2, 10]$
|
| 7.1.16253878339691.1 |
x7 - 3x6 + 2x5 + 65x4 - 61x3 + 216x2 - 616x + 472 |
\( -\,73^{3}\cdot 347^{3} \) |
$D_{7}$ (as 7T2) |
$[29]$
|
| 7.1.17347830539103.1 |
x7 - 3x6 + 25x5 + 36x4 + 4x3 + 387x2 - 222x + 459 |
\( -\,3^{3}\cdot 8629^{3} \) |
$D_{7}$ (as 7T2) |
$[29]$
|
| 7.1.23568314355711.1 |
x7 - x6 - 26x5 - 17x4 + 188x3 + 145x2 + 1638x + 621 |
\( -\,3^{3}\cdot 19^{3}\cdot 503^{3} \) |
$D_{7}$ (as 7T2) |
$[13]$
|
| 7.3.23792932840000.4 |
x7 - 2x6 + 10x5 - 2x4 - 45x3 - 564x2 + 236x + 1496 |
\( 2^{6}\cdot 5^{4}\cdot 29^{6} \) |
$\GL(3,2)$ (as 7T5) |
$[14]$
|
| 7.1.23917744283328.3 |
x7 - 196x4 + 196x3 - 784 |
\( -\,2^{6}\cdot 3^{3}\cdot 7^{12} \) |
$S_7$ (as 7T7) |
$[21]$
|
| 7.1.24054977590363.1 |
x7 - 26x5 - x4 + 562x3 - 1776x2 + 3256x - 5680 |
\( -\,28867^{3} \) |
$D_{7}$ (as 7T2) |
$[13]$
|
| 7.1.24097501111104.1 |
x7 - 2x6 + 25x5 - 110x4 - 596x3 - 920x2 - 732x - 504 |
\( -\,2^{6}\cdot 3^{3}\cdot 29^{3}\cdot 83^{3} \) |
$D_{7}$ (as 7T2) |
$[13]$
|
| 7.1.25503049887875.1 |
x7 - 2x6 + 10x5 - 118x4 + 42x3 + 770x2 - 1127x - 3724 |
\( -\,5^{3}\cdot 7^{3}\cdot 29^{6} \) |
$D_{7}$ (as 7T2) |
$[91]$
|
| 7.1.30755498437691.1 |
x7 - 3x6 - 8x5 - 52x4 - 68x3 - 136x2 + 4335x + 19363 |
\( -\,17^{3}\cdot 19^{3}\cdot 97^{3} \) |
$D_{7}$ (as 7T2) |
$[13]$
|
| 7.1.31360177055375.1 |
x7 - 3x6 - 16x5 - 18x4 + 330x3 - 354x2 - 630x - 185 |
\( -\,5^{3}\cdot 7^{3}\cdot 17^{3}\cdot 53^{3} \) |
$D_{7}$ (as 7T2) |
$[29]$
|
| 7.1.31915344448000.1 |
x7 - x6 - 8x5 - 72x4 + 351x3 - 91x2 - 3380 |
\( -\,2^{9}\cdot 5^{3}\cdot 13^{3}\cdot 61^{3} \) |
$D_{7}$ (as 7T2) |
$[13]$
|
| 7.1.35427446793216.3 |
x7 - 2x6 - 12x5 + 35x4 - 4x3 + 60x2 - 416x + 484 |
\( -\,2^{10}\cdot 3^{6}\cdot 83^{4} \) |
$S_7$ (as 7T7) |
$[20]$
|
| 7.3.36299468209216.1 |
x7 - 2x6 + 22x5 - 48x4 + 136x3 - 236x2 + 130x - 2 |
\( 2^{6}\cdot 191^{2}\cdot 3943^{2} \) |
$\GL(3,2)$ (as 7T5) |
$[12]$
|