Label |
Polynomial |
Degree |
Signature |
Discriminant |
Ram. prime count |
Root discriminant |
CM field |
Galois |
Monogenic |
Galois group |
Class group |
Unit group torsion |
Unit group rank |
Regulator |
47.1.384...167.1 |
x47 - x - 1 |
$47$ |
[1,23] |
$-\,11\cdot 199\cdot 227153\cdot 393351713\cdot 3297807724117\cdot 73745876125109\cdot 80\!\cdots\!59$ |
$7$ |
$46.9920576706$ |
|
|
✓ |
$S_{47}$ (as 47T6) |
not computed |
$2$ |
$23$ |
$$ |
47.1.312...512.1 |
x47 + 4x - 4 |
$47$ |
[1,23] |
$-\,2^{46}\cdot 3\cdot 521\cdot 11213\cdot 282143\cdot 89\!\cdots\!99$ |
$6$ |
$88.452032442$ |
|
|
not computed |
$S_{47}$ (as 47T6) |
not computed |
$2$ |
$23$ |
$$ |
47.1.264...456.1 |
x47 - 4x - 4 |
$47$ |
[1,23] |
$-\,2^{46}\cdot 1630520977\cdot 36906152269379\cdot 62\!\cdots\!13$ |
$4$ |
$92.5605257743$ |
|
|
not computed |
$S_{47}$ (as 47T6) |
not computed |
$2$ |
$23$ |
$$ |
47.1.268...744.1 |
x47 - 2x - 2 |
$47$ |
[1,23] |
$-\,2^{46}\cdot 3\cdot 919\cdot 34591\cdot 40\!\cdots\!33$ |
$5$ |
$92.5924511038$ |
|
|
✓ |
$S_{47}$ (as 47T6) |
not computed |
$2$ |
$23$ |
$$ |
47.1.272...336.1 |
x47 - x - 2 |
$47$ |
[1,23] |
$-\,2^{47}\cdot 31\cdot 39010490269\cdot 2162799135849959\cdot 1173213609967733880077131\cdot 631877578695978213816509977$ |
$6$ |
$92.6238779755$ |
|
|
✓ |
$S_{47}$ (as 47T6) |
not computed |
$2$ |
$23$ |
$$ |
47.1.272...032.1 |
x47 - 2 |
$47$ |
[1,23] |
$-\,2^{46}\cdot 47^{47}$ |
$2$ |
$92.6238779755$ |
|
|
✓ |
$F_{47}$ (as 47T4) |
not computed |
$2$ |
$23$ |
$$ |
47.1.277...320.1 |
x47 + 2x - 2 |
$47$ |
[1,23] |
$-\,2^{46}\cdot 5\cdot 13\cdot 17\cdot 89\cdot 361179289\cdot 582997712425903553\cdot 19\!\cdots\!87$ |
$8$ |
$92.6548218769$ |
|
|
✓ |
$S_{47}$ (as 47T6) |
not computed |
$2$ |
$23$ |
$$ |
47.3.815...889.1 |
x47 - 3x - 1 |
$47$ |
[3,22] |
$45361\cdot 5090740900405619\cdot 35\!\cdots\!71$ |
$3$ |
$127.204144117$ |
|
|
✓ |
$S_{47}$ (as 47T6) |
not computed |
$2$ |
$24$ |
$$ |
47.1.815...784.1 |
x47 + 3x - 2 |
$47$ |
[1,23] |
$-\,2^{47}\cdot 151\cdot 4406810867\cdot 798813369105083\cdot 10\!\cdots\!23$ |
$5$ |
$127.204145023$ |
|
|
✓ |
$S_{47}$ (as 47T6) |
not computed |
$2$ |
$23$ |
$$ |
47.1.343...439.1 |
x47 - 2x - 3 |
$47$ |
[1,23] |
$-\,13\cdot 19051\cdot 13\!\cdots\!53$ |
$3$ |
$137.742384398$ |
|
|
✓ |
$S_{47}$ (as 47T6) |
not computed |
$2$ |
$23$ |
$$ |
47.1.343...727.1 |
x47 - 3 |
$47$ |
[1,23] |
$-\,3^{46}\cdot 47^{47}$ |
$2$ |
$137.742384399$ |
|
|
✓ |
$F_{47}$ (as 47T4) |
not computed |
$2$ |
$23$ |
$$ |
47.1.351...479.1 |
x47 + 3x - 3 |
$47$ |
[1,23] |
$-\,3^{46}\cdot 19\cdot 41\cdot 2593\cdot 95957\cdot 371957\cdot 523877\cdot 221163397457\cdot 47\!\cdots\!53$ |
$9$ |
$137.81114769$ |
|
|
✓ |
$S_{47}$ (as 47T6) |
not computed |
$2$ |
$23$ |
$$ |
47.1.607...327.1 |
x47 + 4x - 1 |
$47$ |
[1,23] |
$-\,3\cdot 161387\cdot 659693\cdot 1442983\cdot 48897948557\cdot 5667513832583\cdot 47737985627803\cdot 1031694803012501\cdot 1239335306776487\cdot 77947030248288422983$ |
$10$ |
$169.60552549$ |
|
|
✓ |
$S_{47}$ (as 47T6) |
not computed |
$2$ |
$23$ |
$$ |
47.1.480...384.1 |
x47 + 2x - 4 |
$47$ |
[1,23] |
$-\,2^{90}\cdot 7\cdot 11\cdot 1983262109989\cdot 9629954559409\cdot 26\!\cdots\!33$ |
$6$ |
$177.230423466$ |
|
|
not computed |
$S_{47}$ (as 47T6) |
not computed |
$2$ |
$23$ |
$$ |
47.1.192...496.1 |
x47 - 3x - 4 |
$47$ |
[1,23] |
$-\,2^{46}\cdot 503\cdot 12399061109599\cdot 43\!\cdots\!37$ |
$4$ |
$182.535803478$ |
|
|
✓ |
$S_{47}$ (as 47T6) |
not computed |
$2$ |
$23$ |
$$ |
47.1.192...944.1 |
x47 + x - 4 |
$47$ |
[1,23] |
$-\,2^{46}\cdot 3\cdot 90\!\cdots\!07$ |
$3$ |
$182.535803643$ |
|
|
✓ |
$S_{47}$ (as 47T6) |
not computed |
$2$ |
$23$ |
$$ |
47.1.588...375.1 |
x47 - 5x - 5 |
$47$ |
[1,23] |
$-\,5^{46}\cdot 101\cdot 40\!\cdots\!87$ |
$3$ |
$216.531047325$ |
|
|
not computed |
$S_{47}$ (as 47T6) |
not computed |
$2$ |
$23$ |
$$ |
47.1.551...911.1 |
x47 - 4x - 5 |
$47$ |
[1,23] |
$-\,11\cdot 887\cdot 56\!\cdots\!23$ |
$3$ |
$227.089027186$ |
|
|
✓ |
$S_{47}$ (as 47T6) |
not computed |
$2$ |
$23$ |
$$ |
47.1.551...375.1 |
x47 - 5 |
$47$ |
[1,23] |
$-\,5^{46}\cdot 47^{47}$ |
$2$ |
$227.089032514$ |
|
|
✓ |
$F_{47}$ (as 47T4) |
not computed |
$2$ |
$23$ |
$$ |
47.1.551...663.1 |
x47 + 2x - 5 |
$47$ |
[1,23] |
$-\,19\cdot 43\cdot 97694879\cdot 33279582301451\cdot 20\!\cdots\!91$ |
$5$ |
$227.089032514$ |
|
|
✓ |
$S_{47}$ (as 47T6) |
not computed |
$2$ |
$23$ |
$$ |
47.1.551...127.1 |
x47 + 3x - 5 |
$47$ |
[1,23] |
$-\,769\cdot 204367\cdot 1847903553389\cdot 18\!\cdots\!41$ |
$4$ |
$227.089032514$ |
|
|
✓ |
$S_{47}$ (as 47T6) |
not computed |
$2$ |
$23$ |
$$ |
47.47.605...769.1 |
x47 - x46 - 138x45 + 315x44 + 8338x43 - 29804x42 - 276833x41 + 1433626x40 + 5033859x39 - 41190458x38 - 30657314x37 + 748097961x36 - 742659788x35 - 8506344013x34 + 21519259357x33 + 52948548811x32 - 268879641855x31 - 30332528938x30 + 1920252236103x29 - 2430736233424x28 - 7367030656288x27 + 21401598866455x26 + 5373046913681x25 - 89240242581627x24 + 85735098102709x23 + 174332690558567x22 - 418760640969237x21 + 24016008538438x20 + 845143941649693x19 - 850093833789498x18 - 563502754038610x17 + 1652337279635119x16 - 688139958495907x15 - 1132046847057208x14 + 1399925903803443x13 - 129366579867529x12 - 739733924950208x11 + 464611724348759x10 + 61382685657965x9 - 169596960618209x8 + 46703998783537x7 + 17972540150505x6 - 11555848466611x5 + 591153994800x4 + 757301830397x3 - 134933083169x2 - 1756074840x + 132954859 |
$47$ |
[47,0] |
$283^{46}$ |
$1$ |
$250.969396701$ |
|
✓ |
|
$C_{47}$ (as 47T1) |
not computed |
$2$ |
$46$ |
$$ |
47.47.466...641.1 |
x47 - x46 - 322x45 + 257x44 + 46168x43 - 32856x42 - 3928972x41 + 2800261x40 + 223114373x39 - 173143135x38 - 9003548066x37 + 7929128719x36 + 268197678343x35 - 271080896060x34 - 6041385515832x33 + 6979624724342x32 + 104494842005772x31 - 136657122243604x30 - 1400247413062994x29 + 2052225750352966x28 + 14591458839594017x27 - 23782847219941819x26 - 118118630838181495x25 + 213321125182479282x24 + 738128822260196887x23 - 1480085655858130569x22 - 3514638820507932409x21 + 7908202660646656434x20 + 12455131093399060106x19 - 32248927636656562527x18 - 31433221457470396690x17 + 98930979031819081241x16 + 51111011671312688653x15 - 223422112969694652903x14 - 36045180999704955067x13 + 359687682365174498379x12 - 43326797472112521543x11 - 392741974421328427418x10 + 139313975200941570964x9 + 266729246622027266884x8 - 153819291119830123270x7 - 92300136797476126809x6 + 82337017997204992796x5 + 4438182302442319866x4 - 17703030829530739458x3 + 4375073965542285492x2 - 7552331260195558x - 66410957360928749 |
$47$ |
[47,0] |
$659^{46}$ |
$1$ |
$573.996347907$ |
|
✓ |
|
$C_{47}$ (as 47T1) |
not computed |
$2$ |
$46$ |
$$ |
47.47.609...241.1 |
x47 - x46 - 460x45 + 327x44 + 94524x43 - 38110x42 - 11539413x41 + 809932x40 + 937957195x39 + 272017844x38 - 53844657814x37 - 36415505127x36 + 2255802403789x35 + 2452634499322x34 - 70139481731357x33 - 106937338241973x32 + 1626084100876542x31 + 3250400054052522x30 - 27906088812601386x29 - 70884683396944095x28 + 346512540625848199x27 + 1118163243198969746x26 - 2955220812359278078x25 - 12685164476223506555x24 + 15046746180109293999x23 + 101582059147167915284x22 - 18312922973366227046x21 - 554548726919125907181x20 - 318711846399705268031x19 + 1938753789920516494271x18 + 2414984135254760303399x17 - 3792697335240007382545x16 - 8178953624841789295386x15 + 2279595290530927592625x14 + 14681478777833447802999x13 + 5435523725560836559149x12 - 12942546360599189199808x11 - 11501227765200381452105x10 + 3183515530405052075328x9 + 7591082677180116655272x8 + 2077754691851067407232x7 - 1323128253866746375290x6 - 896927209808036028574x5 - 132715131473527952574x4 + 23448602689225942698x3 + 8115247135424866684x2 + 574328145019154892x - 1980612833005069 |
$47$ |
[47,0] |
$941^{46}$ |
$1$ |
$813.432947308$ |
|
✓ |
|
$C_{47}$ (as 47T1) |
not computed |
$2$ |
$46$ |
$$ |
47.47.680...841.1 |
x47 - 1081x45 - 705x44 + 534061x43 + 683944x42 - 160057842x41 - 299647654x40 + 32561335719x39 + 78763416061x38 - 4767066709455x37 - 13908937919967x36 + 519679734845940x35 + 1750397799006104x34 - 43074182887990763x33 - 162478138072805487x32 + 2749329116777664352x31 + 11358660939804373275x30 - 136126237738133225032x29 - 605463962245369166572x28 + 5246767648352840100798x27 + 24765274103500484906219x26 - 157566416740809178648611x25 - 778707155396426126313230x24 + 3684240622296757942862071x23 + 18785271879388363208006658x22 - 66986754039408931327563467x21 - 345795459416186142486923619x20 + 946170254872545787018973465x19 + 4814104180441102948763936108x18 - 10375613255284454207094751556x17 - 50032174963571133079560800941x16 + 88105844627120217056303008521x15 + 380945711116472915778482842595x14 - 573465045108814971325177493888x13 - 2067158816911927150047646995633x12 + 2787145282695598886975483579427x11 + 7670341992113409376277564204296x10 - 9619799236229244848389374409877x9 - 18271828994795512973409030766888x8 + 21757031287162404406727090902813x7 + 25318069661907634555608128065064x6 - 28749901083465227418574423514388x5 - 17172272828610619745842195295332x4 + 19384902113022958413624018194070x3 + 2828656546972432377231017394241x2 - 5355885371863393108886638462583x + 1052824394331287344099620777449 |
$47$ |
[47,0] |
$47^{92}$ |
$1$ |
$1875.1785026$ |
|
✓ |
|
$C_{47}$ (as 47T1) |
not computed |
$2$ |
$46$ |
$$ |