| 3.1.54893107083.1 |
x3 - 135269 |
\( -\,3\cdot 17^{2}\cdot 73^{2}\cdot 109^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 1143]$
|
| 3.1.257262282732.1 |
x3 - 585676 |
\( -\,2^{2}\cdot 3\cdot 7^{2}\cdot 13^{2}\cdot 1609^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 1287]$
|
| 3.1.392652134523.1 |
x3 - 2291267 |
\( -\,3^{3}\cdot 11^{2}\cdot 19^{2}\cdot 577^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 387]$
|
| 3.1.495241833996.13 |
x3 + 81396x - 81396 |
\( -\,2^{2}\cdot 3^{4}\cdot 7^{2}\cdot 13\cdot 17^{2}\cdot 19^{2}\cdot 23 \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 429]$
|
| 3.1.976650374700.12 |
x3 - 29289260 |
\( -\,2^{2}\cdot 3^{3}\cdot 5^{2}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\cdot 19^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 3, 129]$
|
| 3.1.1168285253292.1 |
x3 - 1248084 |
\( -\,2^{2}\cdot 3^{5}\cdot 37^{2}\cdot 937^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 1404]$
|
| 3.1.1212366355308.1 |
x3 - 1271412 |
\( -\,2^{2}\cdot 3^{5}\cdot 35317^{2} \) |
$S_3$ (as 3T2) |
$[6, 2700]$
|
| 3.1.1341117996300.24 |
x3 - 63517950 |
\( -\,2^{2}\cdot 3^{5}\cdot 5^{2}\cdot 17^{2}\cdot 19^{2}\cdot 23^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 444]$
|
| 3.1.1537134688908.25 |
x3 - 63468132 |
\( -\,2^{2}\cdot 3^{5}\cdot 7^{2}\cdot 13^{2}\cdot 19^{2}\cdot 23^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 6, 186]$
|
| 3.1.1635247380627.1 |
x3 - 246099 |
\( -\,3^{5}\cdot 7^{2}\cdot 11719^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 2646]$
|
| 3.1.1742439528963.1 |
x3 - 254037 |
\( -\,3^{5}\cdot 7^{2}\cdot 12097^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3186]$
|
| 3.1.2110227909075.8 |
x3 - 52278655 |
\( -\,3^{3}\cdot 5^{2}\cdot 11^{2}\cdot 13^{2}\cdot 17^{2}\cdot 23^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 570]$
|
| 3.1.2164879392588.1 |
x3 - 283162 |
\( -\,2^{2}\cdot 3^{3}\cdot 11^{2}\cdot 61^{2}\cdot 211^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 6, 300]$
|
| 3.1.2300141660652.1 |
x3 - 291874 |
\( -\,2^{2}\cdot 3^{3}\cdot 11^{2}\cdot 13267^{2} \) |
$S_3$ (as 3T2) |
$[3, 6, 912]$
|
| 3.1.2628591272748.5 |
x3 - 11856684 |
\( -\,2^{2}\cdot 3^{5}\cdot 7^{2}\cdot 17^{2}\cdot 19^{2}\cdot 23^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 546]$
|
| 3.1.2830346831907.1 |
x3 - 323771 |
\( -\,3^{3}\cdot 7^{2}\cdot 23^{2}\cdot 2011^{2} \) |
$S_3$ (as 3T2) |
$[3, 6, 1740]$
|
| 3.1.2999274043923.1 |
x3 - 333293 |
\( -\,3^{3}\cdot 23^{2}\cdot 43^{2}\cdot 337^{2} \) |
$S_3$ (as 3T2) |
$[3, 6, 1596]$
|
| 3.1.3057089042700.8 |
x3 - 2355430 |
\( -\,2^{2}\cdot 3^{3}\cdot 5^{2}\cdot 7^{2}\cdot 11^{2}\cdot 19^{2}\cdot 23^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 6, 126]$
|
| 3.1.3418220414700.7 |
x3 - 211706950 |
\( -\,2^{2}\cdot 3^{3}\cdot 5^{2}\cdot 7^{2}\cdot 13^{2}\cdot 17^{2}\cdot 23^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 3, 285]$
|
| 3.1.3709538592588.1 |
x3 - 370662 |
\( -\,2^{2}\cdot 3^{5}\cdot 163^{2}\cdot 379^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 609]$
|
| 3.1.3795781578732.3 |
x3 - 1124838 |
\( -\,2^{2}\cdot 3^{5}\cdot 11^{2}\cdot 13^{2}\cdot 19^{2}\cdot 23^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 684]$
|
| 3.1.3814025824332.1 |
x3 - 375846 |
\( -\,2^{2}\cdot 3^{5}\cdot 37^{2}\cdot 1693^{2} \) |
$S_3$ (as 3T2) |
$[3, 18, 414]$
|
| 3.1.4136046701787.9 |
x3 - 86497411 |
\( -\,3^{3}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\cdot 17^{2}\cdot 23^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 6, 504]$
(GRH)
|
| 3.1.4269357352260.19 |
x3 + 513513x - 77483406 |
\( -\,2^{2}\cdot 3^{5}\cdot 5\cdot 7\cdot 11^{2}\cdot 13^{2}\cdot 17\cdot 19^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 1956]$
(GRH)
|
| 3.1.5248486827675.31 |
x3 - 9258795 |
\( -\,3^{5}\cdot 5^{2}\cdot 7^{2}\cdot 13^{2}\cdot 17^{2}\cdot 19^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 969]$
(GRH)
|
| 3.1.5506571052675.21 |
x3 - 38386425 |
\( -\,3^{5}\cdot 5^{2}\cdot 7^{2}\cdot 11^{2}\cdot 17^{2}\cdot 23^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 546]$
(GRH)
|
| 3.1.5760244046700.12 |
x3 - 39260650 |
\( -\,2^{2}\cdot 3^{3}\cdot 5^{2}\cdot 11^{2}\cdot 13^{2}\cdot 17^{2}\cdot 19^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 3, 228]$
(GRH)
|
| 3.1.5760244046700.18 |
x3 - 86373430 |
\( -\,2^{2}\cdot 3^{3}\cdot 5^{2}\cdot 11^{2}\cdot 13^{2}\cdot 17^{2}\cdot 19^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 3, 243]$
(GRH)
|
| 3.1.6585083726760.1 |
x3 + 500973x - 43410554 |
\( -\,2^{3}\cdot 3^{4}\cdot 5\cdot 7\cdot 11^{2}\cdot 17^{2}\cdot 19^{2}\cdot 23 \) |
$S_3$ (as 3T2) |
$[3, 3, 1203]$
(GRH)
|
| 3.1.7036752422700.2 |
x3 - 10720710 |
\( -\,2^{2}\cdot 3^{5}\cdot 5^{2}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\cdot 17^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 6, 90]$
(GRH)
|
| 3.1.7036752422700.41 |
x3 - 364504140 |
\( -\,2^{2}\cdot 3^{5}\cdot 5^{2}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\cdot 17^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 3, 315]$
(GRH)
|
| 3.1.7301642424300.17 |
x3 - 59803450 |
\( -\,2^{2}\cdot 3^{3}\cdot 5^{2}\cdot 7^{2}\cdot 17^{2}\cdot 19^{2}\cdot 23^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 3, 300]$
(GRH)
|
| 3.1.7640727985800.4 |
x3 + 188370x - 9878960 |
\( -\,2^{3}\cdot 3^{3}\cdot 5^{2}\cdot 7^{2}\cdot 13^{2}\cdot 17\cdot 19\cdot 23^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 18, 90]$
(GRH)
|
| 3.1.8440911636300.14 |
x3 - 399777950 |
\( -\,2^{2}\cdot 3^{3}\cdot 5^{2}\cdot 11^{2}\cdot 13^{2}\cdot 17^{2}\cdot 23^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 6, 90]$
(GRH)
|
| 3.1.8789853372300.5 |
x3 - 1141140 |
\( -\,2^{2}\cdot 3^{5}\cdot 5^{2}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\cdot 19^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 3, 288]$
(GRH)
|
| 3.1.8789853372300.20 |
x3 - 188288100 |
\( -\,2^{2}\cdot 3^{5}\cdot 5^{2}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\cdot 19^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 3, 162]$
(GRH)
|
| 3.1.8789853372300.36 |
x3 - 32522490 |
\( -\,2^{2}\cdot 3^{5}\cdot 5^{2}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\cdot 19^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 3, 240]$
(GRH)
|
| 3.1.8789853372300.41 |
x3 - 37657620 |
\( -\,2^{2}\cdot 3^{5}\cdot 5^{2}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\cdot 19^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 3, 180]$
(GRH)
|
| 3.1.8789853372300.57 |
x3 - 7417410 |
\( -\,2^{2}\cdot 3^{5}\cdot 5^{2}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\cdot 19^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 3, 288]$
(GRH)
|
| 3.1.9065957654988.6 |
x3 - 15066012 |
\( -\,2^{2}\cdot 3^{5}\cdot 13^{2}\cdot 17^{2}\cdot 19^{2}\cdot 23^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 822]$
(GRH)
|
| 3.1.9607091805675.6 |
x3 - 162845865 |
\( -\,3^{5}\cdot 5^{2}\cdot 7^{2}\cdot 13^{2}\cdot 19^{2}\cdot 23^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 6, 558]$
(GRH)
|
| 3.1.10543837718700.14 |
x3 - 34370050 |
\( -\,2^{2}\cdot 3^{3}\cdot 5^{2}\cdot 11^{2}\cdot 13^{2}\cdot 19^{2}\cdot 23^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 3, 126]$
(GRH)
|
| 3.1.10543837718700.20 |
x3 - 8123830 |
\( -\,2^{2}\cdot 3^{3}\cdot 5^{2}\cdot 11^{2}\cdot 13^{2}\cdot 19^{2}\cdot 23^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 3, 138]$
(GRH)
|
| 3.1.11290078331532.5 |
x3 - 153901748 |
\( -\,2^{2}\cdot 3^{3}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\cdot 17^{2}\cdot 19^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 3, 180]$
(GRH)
|
| 3.1.11489018616075.7 |
x3 - x2 - 652318x + 214467772 |
\( -\,3\cdot 5^{2}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\cdot 17^{2}\cdot 23^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 6, 792]$
(GRH)
|
| 3.1.12960549105075.28 |
x3 - 65819325 |
\( -\,3^{5}\cdot 5^{2}\cdot 11^{2}\cdot 13^{2}\cdot 17^{2}\cdot 19^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 1272]$
(GRH)
|
| 3.1.15031169376300.6 |
x3 - 126842100 |
\( -\,2^{2}\cdot 3^{5}\cdot 5^{2}\cdot 7^{2}\cdot 11^{2}\cdot 17^{2}\cdot 19^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 3, 288]$
(GRH)
|
| 3.1.15031169376300.39 |
x3 - 418578930 |
\( -\,2^{2}\cdot 3^{5}\cdot 5^{2}\cdot 7^{2}\cdot 11^{2}\cdot 17^{2}\cdot 19^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 3, 327]$
(GRH)
|
| 3.1.16428695454675.2 |
x3 - 11700675 |
\( -\,3^{5}\cdot 5^{2}\cdot 7^{2}\cdot 17^{2}\cdot 19^{2}\cdot 23^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 6, 264]$
(GRH)
|
| 3.1.16544186807148.18 |
x3 - 612135524 |
\( -\,2^{2}\cdot 3^{3}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\cdot 17^{2}\cdot 23^{2} \) |
$S_3$ (as 3T2) |
$[3, 3, 3, 3, 243]$
(GRH)
|