## Results (1-50 of 245 matches)

Next   displayed columns for results
Label Polynomial Discriminant Galois group Class group
26.2.287...125.1 $x^{26} - 2 x^{25} - 4 x^{24} + 16 x^{23} - 11 x^{22} - 29 x^{21} + 88 x^{20} - 189 x^{19} + 510 x^{18} - 655 x^{17} + 132 x^{16} - 179 x^{15} + 449 x^{14} + 1090 x^{13} + 114 x^{12} - 781 x^{11} - 543 x^{10} - 58 x^{9} + 245 x^{8} + 173 x^{7} + 196 x^{6} + 159 x^{5} + 34 x^{4} - 4 x^{3} + 6 x^{2} - 6 x - 1$ $5^{13}\cdot 191^{12}$ $D_{26}$ (as 26T3) trivial
26.2.624...401.1 $x^{26} - x - 1$ $73\cdot 181\cdot 2385857\cdot 32375941061\cdot 6118709648547401$ $S_{26}$ (as 26T96) trivial
26.0.549...875.1 $x^{26} - 2 x^{25} + 5 x^{24} - 26 x^{23} + 53 x^{22} - 54 x^{21} + 268 x^{20} - 237 x^{19} + 744 x^{18} + 440 x^{17} + 1338 x^{16} - 3330 x^{15} - 8756 x^{14} + 7284 x^{13} + 63381 x^{12} + 167449 x^{11} + 262693 x^{10} + 320455 x^{9} + 419505 x^{8} + 480606 x^{7} + 569660 x^{6} + 459537 x^{5} + 397335 x^{4} + 258066 x^{3} + 85342 x^{2} + 34263 x + 39371$ $-\,5^{13}\cdot 191^{13}$ $D_{26}$ (as 26T3) $[4]$
26.2.129...328.1 $x^{26} - 8 x^{24} + 24 x^{22} - 16 x^{20} + 176 x^{18} - 608 x^{16} + 320 x^{14} + 3712 x^{12} + 1280 x^{10} - 17408 x^{8} + 22528 x^{6} + 98304 x^{4} + 65536 x^{2} - 8192$ $2^{39}\cdot 191^{12}$ $D_{26}$ (as 26T3) trivial
26.0.115...543.1 $x^{26} - x^{25} + 11 x^{24} - 20 x^{23} + 107 x^{22} - 382 x^{21} + 1248 x^{20} - 3197 x^{19} + 6521 x^{18} - 10581 x^{17} + 13912 x^{16} - 15385 x^{15} + 14827 x^{14} - 15025 x^{13} + 15241 x^{12} - 12717 x^{11} + 9243 x^{10} - 4542 x^{9} - 233 x^{8} + 4189 x^{7} - 7810 x^{6} + 6629 x^{5} - 1342 x^{4} - 1780 x^{3} + 1964 x^{2} - 1216 x + 361$ $-\,23^{13}\cdot 73^{12}$ $D_{26}$ (as 26T3) $[3]$
26.0.252...496.1 $x^{26} - 2 x^{13} + 2$ $-\,2^{38}\cdot 13^{26}$ $C_2\times F_{13}$ (as 26T10) trivial
26.2.602...128.1 $x^{26} - 12 x^{24} + 44 x^{22} - 24 x^{20} - 272 x^{18} + 1312 x^{16} - 1408 x^{14} - 3328 x^{12} + 30208 x^{10} - 19456 x^{8} + 46080 x^{6} + 204800 x^{4} + 131072 x^{2} - 8192$ $2^{39}\cdot 263^{12}$ $D_{26}$ (as 26T3) trivial
26.0.777...987.1 $x^{26} - 3 x^{13} + 3$ $-\,3^{25}\cdot 13^{26}$ $C_2\times F_{13}$ (as 26T10) trivial
26.2.252...432.1 $x^{26} - 12 x^{24} + 54 x^{22} - 54 x^{20} + 891 x^{18} - 4617 x^{16} + 3645 x^{14} + 63423 x^{12} + 32805 x^{10} - 669222 x^{8} + 1299078 x^{6} + 8503056 x^{4} + 8503056 x^{2} - 1594323$ $2^{26}\cdot 3^{13}\cdot 191^{12}$ $D_{26}$ (as 26T3) not computed
26.2.713...893.1 $x^{26} - x^{25} - 37 x^{24} + 36 x^{23} + 656 x^{22} - 602 x^{21} - 7532 x^{20} + 5987 x^{19} + 63242 x^{18} - 39168 x^{17} - 407978 x^{16} + 177750 x^{15} + 2044391 x^{14} - 593805 x^{13} - 7863783 x^{12} + 1620832 x^{11} + 22802242 x^{10} - 3804296 x^{9} - 48757198 x^{8} + 7281003 x^{7} + 74301119 x^{6} - 12442481 x^{5} - 74591007 x^{4} + 16397553 x^{3} + 41639217 x^{2} - 9412671 x - 11716513$ $13^{13}\cdot 191^{12}$ $D_{26}$ (as 26T3) not computed
26.2.955...125.1 $x^{26} - 4 x^{25} - x^{24} + 12 x^{23} - 20 x^{22} - 91 x^{21} + 245 x^{20} + 945 x^{19} + 237 x^{18} - 2538 x^{17} - 3465 x^{16} + 4625 x^{15} + 16764 x^{14} + 17173 x^{13} + 6911 x^{12} - 948 x^{11} + 1857 x^{10} + 6384 x^{9} + 2100 x^{8} - 1050 x^{7} + 280 x^{6} + 490 x^{5} - 352 x^{4} - 172 x^{3} - 11 x^{2} + 8 x - 1$ $5^{13}\cdot 19^{12}\cdot 29^{12}$ $D_{26}$ (as 26T3) trivial
26.0.120...736.1 $x^{26} - 4 x + 4$ $-\,2^{26}\cdot 11\cdot 5351\cdot 322710411593\cdot 942553212724915163$ $S_{26}$ (as 26T96) trivial
26.0.167...007.1 $x^{26} - 8 x^{25} + 22 x^{24} - 43 x^{23} + 115 x^{22} - 151 x^{21} + 220 x^{20} - 577 x^{19} + 509 x^{18} - 1015 x^{17} + 1547 x^{16} - 884 x^{15} + 2815 x^{14} - 3027 x^{13} + 2341 x^{12} - 3581 x^{11} + 6893 x^{10} + 2193 x^{9} + 12186 x^{8} - 1094 x^{7} + 906 x^{6} - 2074 x^{5} + 14041 x^{4} + 14998 x^{3} + 13037 x^{2} + 4230 x + 1325$ $-\,7^{13}\cdot 401^{12}$ $D_{26}$ (as 26T3) trivial
26.0.463...123.1 $x^{26} - 9 x^{24} - 20 x^{23} - 12 x^{22} + 186 x^{21} + 794 x^{20} - 27 x^{19} - 4404 x^{18} - 5528 x^{17} + 1038 x^{16} + 13671 x^{15} + 59660 x^{14} + 64299 x^{13} - 161565 x^{12} - 318218 x^{11} + 37881 x^{10} + 189642 x^{9} - 55703 x^{8} + 873384 x^{7} + 1978515 x^{6} - 188640 x^{5} - 4211379 x^{4} - 4130865 x^{3} + 1301535 x^{2} + 4678236 x + 2259171$ $-\,3^{13}\cdot 1093^{12}$ $D_{26}$ (as 26T3) trivial
26.2.486...125.1 $x^{26} - 4 x^{25} + 20 x^{24} - 36 x^{23} + 151 x^{22} - 166 x^{21} + 575 x^{20} - 1143 x^{19} + 1160 x^{18} - 4286 x^{17} + 2641 x^{16} - 4158 x^{15} + 10417 x^{14} + 3815 x^{13} + 21287 x^{12} + 17505 x^{11} + 19313 x^{10} + 20293 x^{9} + 10822 x^{8} + 10971 x^{7} + 6883 x^{6} + 3740 x^{5} + 2969 x^{4} + 837 x^{3} + 388 x^{2} + 17 x - 1$ $5^{13}\cdot 631^{12}$ $D_{26}$ (as 26T3) trivial
26.2.596...009.1 $x^{26} - 4 x - 1$ $29\cdot 10128571112394569\cdot 20292423834064993115883509$ $S_{26}$ (as 26T96) trivial
26.2.596...776.1 $x^{26} - 2 x - 1$ $2^{27}\cdot 7417\cdot 22861\cdot 53970181\cdot 4852810050936915961$ $S_{26}$ (as 26T96) trivial
26.2.117...632.1 $x^{26} - 18 x^{24} + 99 x^{22} - 81 x^{20} - 1377 x^{18} + 9963 x^{16} - 16038 x^{14} - 56862 x^{12} + 774198 x^{10} - 747954 x^{8} + 2657205 x^{6} + 17714700 x^{4} + 17006112 x^{2} - 1594323$ $2^{26}\cdot 3^{13}\cdot 263^{12}$ $D_{26}$ (as 26T3) not computed
26.26.127...693.1 $x^{26} - x^{25} - 25 x^{24} + 24 x^{23} + 276 x^{22} - 253 x^{21} - 1771 x^{20} + 1540 x^{19} + 7315 x^{18} - 5985 x^{17} - 20349 x^{16} + 15504 x^{15} + 38760 x^{14} - 27132 x^{13} - 50388 x^{12} + 31824 x^{11} + 43758 x^{10} - 24310 x^{9} - 24310 x^{8} + 11440 x^{7} + 8008 x^{6} - 3003 x^{5} - 1365 x^{4} + 364 x^{3} + 91 x^{2} - 13 x - 1$ $53^{25}$ $C_{26}$ (as 26T1) trivial
26.2.144...125.1 $x^{26} - 3 x^{25} + 8 x^{24} - 23 x^{23} - 44 x^{22} + 17 x^{21} + 450 x^{20} - 860 x^{19} + 3401 x^{18} + 4044 x^{17} - 12200 x^{16} - 9996 x^{15} + 5376 x^{14} - 176112 x^{13} - 67837 x^{12} - 1501 x^{11} - 261354 x^{10} - 143521 x^{9} - 1171 x^{8} - 152170 x^{7} - 30780 x^{6} - 39875 x^{5} - 16350 x^{4} - 26625 x^{3} - 13000 x^{2} - 6875 x - 3125$ $5^{13}\cdot 691^{12}$ $D_{26}$ (as 26T3) trivial
26.2.233...497.1 $x^{26} - x^{25} - 50 x^{24} + 48 x^{23} + 1188 x^{22} - 1066 x^{21} - 17960 x^{20} + 14231 x^{19} + 194023 x^{18} - 126696 x^{17} - 1579415 x^{16} + 794998 x^{15} + 9883811 x^{14} - 3670079 x^{13} - 47524550 x^{12} + 13070104 x^{11} + 173418938 x^{10} - 37145018 x^{9} - 469905596 x^{8} + 84248201 x^{7} + 912345834 x^{6} - 152992905 x^{5} - 1188256605 x^{4} + 203114817 x^{3} + 913828487 x^{2} - 132782216 x - 329129521$ $17^{13}\cdot 191^{12}$ $D_{26}$ (as 26T3) not computed
26.2.331...693.1 $x^{26} - x^{25} - 45 x^{24} + 44 x^{23} + 912 x^{22} - 836 x^{21} - 11055 x^{20} + 9149 x^{19} + 89968 x^{18} - 63863 x^{17} - 520434 x^{16} + 297998 x^{15} + 2198217 x^{14} - 952653 x^{13} - 6808591 x^{12} + 2140242 x^{11} + 15236220 x^{10} - 3364016 x^{9} - 23680109 x^{8} + 2956997 x^{7} + 23956149 x^{6} - 618594 x^{5} - 14015975 x^{4} - 2419867 x^{3} + 3438259 x^{2} + 3561247 x - 1990843$ $13^{13}\cdot 263^{12}$ $D_{26}$ (as 26T3) not computed
26.0.105...671.1 $x^{26} - 4 x^{25} + 29 x^{24} - 114 x^{23} + 437 x^{22} - 1233 x^{21} + 3738 x^{20} - 6943 x^{19} + 17106 x^{18} - 22984 x^{17} + 59870 x^{16} - 97147 x^{15} + 263098 x^{14} - 450753 x^{13} + 813670 x^{12} - 1048444 x^{11} + 1103470 x^{10} - 985605 x^{9} + 369592 x^{8} - 235197 x^{7} - 276734 x^{6} + 186178 x^{5} - 88862 x^{4} + 240404 x^{3} + 178609 x^{2} + 96160 x + 61675$ $-\,31^{13}\cdot 113^{12}$ $D_{26}$ (as 26T3) $[3]$
26.2.109...616.1 $x^{26} - 4 x - 4$ $2^{26}\cdot 6733\cdot 11138847809333\cdot 21705255151207321321$ $S_{26}$ (as 26T96) trivial
26.0.200...232.1 $x^{26} - 2 x + 2$ $-\,2^{26}\cdot 471266581969\cdot 6342995795806711798279927$ $S_{26}$ (as 26T96) trivial
26.0.206...607.1 $x^{26} - x + 2$ $-\,31\cdot 2143\cdot 2713\cdot 7727\cdot 758671\cdot 195505457062666900180454399$ $S_{26}$ (as 26T96) trivial
26.0.206...232.1 $x^{26} + 2$ $-\,2^{51}\cdot 13^{26}$ $C_2\times F_{13}$ (as 26T10) trivial
26.2.206...232.1 $x^{26} - 2$ $2^{51}\cdot 13^{26}$ $C_2\times F_{13}$ (as 26T10) trivial
26.2.212...232.1 $x^{26} - 2 x - 2$ $2^{26}\cdot 3\cdot 67\cdot 107\cdot 5867\cdot 10536636742939\cdot 2381953897662043$ $S_{26}$ (as 26T96) trivial
26.0.526...875.1 $x^{26} - 8 x^{25} + 14 x^{24} + 18 x^{23} - 92 x^{22} + 514 x^{21} - 1212 x^{20} - 596 x^{19} + 954 x^{18} - 2053 x^{17} + 29744 x^{16} - 4491 x^{15} + 71256 x^{14} - 216720 x^{13} - 344608 x^{12} + 50717 x^{11} + 1942970 x^{10} + 2307612 x^{9} + 264538 x^{8} - 5680405 x^{7} - 6094469 x^{6} - 2337568 x^{5} + 3586683 x^{4} + 5626157 x^{3} + 5313221 x^{2} + 843733 x + 496261$ $-\,5^{13}\cdot 19^{13}\cdot 29^{13}$ $D_{26}$ (as 26T3) $[2, 4]$
26.0.199...875.1 $x^{26} - 6 x^{25} + 34 x^{24} - 149 x^{23} + 724 x^{22} - 3027 x^{21} + 10234 x^{20} - 26698 x^{19} + 56427 x^{18} - 101122 x^{17} + 164719 x^{16} - 254230 x^{15} + 377196 x^{14} - 535703 x^{13} + 716143 x^{12} - 954928 x^{11} + 1568217 x^{10} - 3148667 x^{9} + 5745440 x^{8} - 8171380 x^{7} + 9122775 x^{6} - 8433000 x^{5} + 7096875 x^{4} - 5099875 x^{3} + 3012500 x^{2} - 717500 x + 153125$ $-\,5^{12}\cdot 691^{13}$ $D_{26}$ (as 26T3) $[5]$
26.0.308...216.1 $x^{26} + 6 x^{24} + 189 x^{22} + 2700 x^{20} + 22032 x^{18} + 262683 x^{16} + 3276126 x^{14} + 20111652 x^{12} + 46005732 x^{10} - 38618046 x^{8} - 195511239 x^{6} - 5668704 x^{4} + 416649744 x^{2} + 419306949$ $-\,2^{26}\cdot 3^{13}\cdot 263^{13}$ $D_{26}$ (as 26T3) not computed
26.0.445...927.1 $x^{26} - 2 x^{25} + 17 x^{24} - 98 x^{23} + 152 x^{22} - 696 x^{21} + 1597 x^{20} + 1896 x^{19} + 20067 x^{18} + 156392 x^{17} + 357813 x^{16} - 241572 x^{15} - 6441785 x^{14} - 21049242 x^{13} - 6337440 x^{12} + 144534568 x^{11} + 455484358 x^{10} + 307770160 x^{9} - 848362260 x^{8} - 452511774 x^{7} + 6860115833 x^{6} + 21793527372 x^{5} + 15854969370 x^{4} - 22167126630 x^{3} - 34371344111 x^{2} - 12604846614 x + 29070259637$ $-\,17^{13}\cdot 191^{13}$ $D_{26}$ (as 26T3) not computed
26.2.273...125.1 $x^{26} - 5$ $5^{25}\cdot 13^{26}$ $C_2\times F_{13}$ (as 26T10) trivial
26.2.225...849.1 $x^{26} - 3 x + 1$ $17\cdot 47\cdot 457\cdot 58031\cdot 959677\cdot 10678056923\cdot 1039710637886321095943$ $S_{26}$ (as 26T96) trivial
26.2.225...401.1 $x^{26} - 3 x - 1$ $97\cdot 1027188157\cdot 761641463933293\cdot 2974955834015001526633$ $S_{26}$ (as 26T96) trivial
26.2.225...857.1 $x^{26} - 3 x - 2$ $22739663746473685987\cdot 9937244678052017295688440011$ $S_{26}$ (as 26T96) trivial
26.0.275...999.1 $x^{26} - x^{25} + 2 x^{24} + 48 x^{23} - 41 x^{22} + 75 x^{21} + 827 x^{20} - 597 x^{19} + 990 x^{18} + 6414 x^{17} - 3755 x^{16} + 5397 x^{15} + 23537 x^{14} - 10353 x^{13} + 15676 x^{12} + 35758 x^{11} - 6997 x^{10} + 39165 x^{9} + 14468 x^{8} + 8338 x^{7} + 43270 x^{6} - 25107 x^{5} + 25775 x^{4} - 10788 x^{3} - 8746 x^{2} + 10048 x + 4289$ $-\,79^{25}$ $C_{26}$ (as 26T1) $[265]$
26.0.384...563.1 $x^{26} - x^{25} + 25 x^{24} - 14 x^{23} + 405 x^{22} - 192 x^{21} + 3603 x^{20} - 1111 x^{19} + 22650 x^{18} - 5414 x^{17} + 87624 x^{16} - 5096 x^{15} + 234451 x^{14} - 19756 x^{13} + 367484 x^{12} - 30562 x^{11} + 404986 x^{10} - 57146 x^{9} + 232119 x^{8} - 34742 x^{7} + 91429 x^{6} - 16226 x^{5} + 7319 x^{4} + 98 x^{3} + 168 x^{2} - 10 x + 1$ $-\,3^{13}\cdot 53^{24}$ $C_{26}$ (as 26T1) $[53, 53]$
26.2.330...944.1 $x^{26} - 4 x + 1$ $2^{26}\cdot 3\cdot 149\cdot 977\cdot 3541\cdot 12747387209041\cdot 2498880811540538989$ $S_{26}$ (as 26T96) trivial
26.0.499...143.1 $x^{26} - 3 x + 3$ $-\,3^{25}\cdot 37\cdot 193\cdot 397\cdot 3673\cdot 565614067938252407382930781$ $S_{26}$ (as 26T96) $[2]$
26.0.521...768.1 $x^{26} - 2 x + 3$ $-\,2^{27}\cdot 47\cdot 349\cdot 1395923\cdot 415496197\cdot 4084851144240798246517$ $S_{26}$ (as 26T96) trivial
26.0.521...143.1 $x^{26} - x + 3$ $-\,59\cdot 71\cdot 33563\cdot 396349\cdot 15944389\cdot 1472102329\cdot 3987894255883125121$ $S_{26}$ (as 26T96) trivial
26.2.521...768.1 $x^{26} - 3$ $2^{26}\cdot 3^{25}\cdot 13^{26}$ $C_2\times F_{13}$ (as 26T10) trivial
26.2.521...393.1 $x^{26} - x - 3$ $2083\cdot 1519447\cdot 16\!\cdots\!93$ $S_{26}$ (as 26T96) trivial
26.2.544...393.1 $x^{26} - 3 x - 3$ $3^{25}\cdot 19\cdot 9619\cdot 306629767564201\cdot 114607019135083291$ $S_{26}$ (as 26T96) trivial
26.0.161...184.1 $x^{26} + 49 x^{24} + 994 x^{22} + 10915 x^{20} + 71324 x^{18} + 287620 x^{16} + 721007 x^{14} + 1111118 x^{12} + 1019820 x^{10} + 521449 x^{8} + 129173 x^{6} + 10874 x^{4} + 236 x^{2} + 1$ $-\,2^{26}\cdot 53^{24}$ $C_{26}$ (as 26T1) $[14209]$
26.0.203...839.1 $x^{26} - x^{25} + 28 x^{24} - 29 x^{23} + 276 x^{22} - 306 x^{21} + 1038 x^{20} - 1375 x^{19} + 54 x^{18} - 1586 x^{17} - 8106 x^{16} - 449 x^{15} - 5336 x^{14} - 49021 x^{13} + 97058 x^{12} - 111859 x^{11} + 338650 x^{10} + 82909 x^{9} + 16023 x^{8} + 521830 x^{7} - 124280 x^{6} - 1299383 x^{5} + 3115247 x^{4} - 2524927 x^{3} + 1035234 x^{2} + 2787416 x + 1009861$ $-\,3^{13}\cdot 53^{25}$ $C_{26}$ (as 26T1) $[32510]$
26.2.214...688.1 $x^{26} - 13 x^{25} + 121 x^{24} - 802 x^{23} + 4651 x^{22} - 22825 x^{21} + 98893 x^{20} - 371962 x^{19} + 1240872 x^{18} - 3661594 x^{17} + 9598744 x^{16} - 22249906 x^{15} + 46158003 x^{14} - 86354433 x^{13} + 145428273 x^{12} - 217463318 x^{11} + 270662252 x^{10} - 252429562 x^{9} + 127602004 x^{8} + 63980066 x^{7} - 189163921 x^{6} + 167659735 x^{5} - 112782103 x^{4} + 89161818 x^{3} - 55238589 x^{2} + 18143595 x - 204972201$ $2^{24}\cdot 53^{25}$ $D_{26}$ (as 26T3) $[13]$
26.26.294...125.1 $x^{26} - 11 x^{25} - 7 x^{24} + 468 x^{23} - 1046 x^{22} - 6960 x^{21} + 26796 x^{20} + 40357 x^{19} - 278503 x^{18} + 355 x^{17} + 1499785 x^{16} - 1077692 x^{15} - 4479644 x^{14} + 5284410 x^{13} + 7470556 x^{12} - 11963101 x^{11} - 6678940 x^{10} + 14762504 x^{9} + 2744933 x^{8} - 10366844 x^{7} - 29320 x^{6} + 4079010 x^{5} - 378384 x^{4} - 821546 x^{3} + 120702 x^{2} + 64121 x - 11789$ $5^{13}\cdot 53^{24}$ $C_{26}$ (as 26T1) trivial
Next   displayed columns for results