| 21.3.3219905755813179726837607.1 |
x21 - 5x14 - 8x7 - 1 |
\( -\,7^{29} \) |
$C_3\times D_7$ (as 21T3) |
Trivial
(GRH)
|
| 21.3.3960879820606443846053527.1 |
x21 - 5x20 + 11x19 - 20x18 + 37x17 - 68x16 + 120x15 - 168x14 + 237x13 - 331x12 + 362x11 - 431x10 + 452x9 - 381x8 + 350x7 - 238x6 + 169x5 - 90x4 + 43x3 + 6x2 + 27 |
\( -\,13^{2}\cdot 1801^{2}\cdot 193327^{3} \) |
21T139 |
Trivial
(GRH)
|
| 21.3.6826740523487474380439552.1 |
x21 - 2x20 - x19 - 3x18 + 10x17 + 13x16 + x15 - 27x14 - 16x13 - 20x12 + 55x11 - 4x10 + 8x9 - 32x8 - x7 + 70x6 - 52x5 - 4x4 + 6x3 + 2x2 - 6x + 1 |
\( -\,2^{21}\cdot 71^{10} \) |
$S_3\times D_7$ (as 21T8) |
Trivial
(GRH)
|
| 21.3.7174552902718171733819392.1 |
x21 - 7x20 + 21x19 - 42x18 + 77x17 - 126x16 + 168x15 - 213x14 + 266x13 - 280x12 + 259x11 - 217x10 + 133x9 - 42x8 - 53x7 + 126x6 - 112x5 + 7x4 + 63x3 - 49x2 + 14x - 1 |
\( -\,2^{18}\cdot 7^{23} \) |
$F_7$ (as 21T4) |
Trivial
(GRH)
|
| 21.3.9284127557257563917891699.1 |
x21 - 5x20 + 11x19 - 13x18 + 7x17 + 4x16 - 16x15 + 13x14 - 6x13 + 2x12 - 2x11 + 21x10 - 28x8 + 29x7 - 16x6 - 18x5 + 17x4 - 9x3 - 2x2 + 3x - 1 |
\( -\,11^{9}\cdot 13^{14} \) |
$F_7$ (as 21T4) |
Trivial
(GRH)
|
| 21.3.10904210824444953500612167.1 |
x21 + x19 - 2x18 - 2x17 - 3x16 - x15 + 4x14 + 15x13 + 3x12 - 4x11 - 29x10 - 4x9 + 12x8 + 23x7 + 16x6 - 4x5 - 7x4 - 8x3 - x2 + 1 |
\( -\,31^{8}\cdot 67^{3}\cdot 349^{3} \) |
21T74 |
Trivial
(GRH)
|
| 21.3.65701728236743660173798567.1 |
x21 - 4x20 + 12x19 - 22x18 + 41x17 - 54x16 + 79x15 - 60x14 + 57x13 + 46x12 - 70x11 + 222x10 - 182x9 + 306x8 - 168x7 + 207x6 - 48x5 + 42x4 + 5x3 - 17x2 - 15x - 1 |
\( -\,3^{24}\cdot 7^{17} \) |
$C_3\times F_7$ (as 21T9) |
Trivial
(GRH)
|
| 21.3.108608979330127274981177223.1 |
x21 - 9x14 - 12x7 + 1 |
\( -\,3^{28}\cdot 7^{15} \) |
$C_3\times F_7$ (as 21T9) |
Trivial
(GRH)
|
| 21.3.167297208611536987435565056.1 |
x21 - 7x20 + 23x19 - 46x18 + 59x17 - 38x16 - 51x15 + 276x14 - 725x13 + 1392x12 - 2056x11 + 2397x10 - 2311x9 + 1987x8 - 1615x7 + 1208x6 - 783x5 + 436x4 - 201x3 + 66x2 - 12x + 1 |
\( -\,2^{18}\cdot 17^{6}\cdot 31^{9} \) |
21T57 |
Trivial
(GRH)
|
| 21.3.188012010050973537326115059.1 |
x21 - 3x20 + 2x19 - 4x18 + 10x17 - 9x16 + 70x15 - 167x14 + 91x13 + 110x12 - 252x11 + 50x10 + 456x9 - 519x8 + x7 + 487x6 - 548x5 + 272x4 - 48x3 + x2 - 3x + 1 |
\( -\,59^{8}\cdot 10859^{3} \) |
21T74 |
Trivial
(GRH)
|
| 21.3.214407920026380373514939807.1 |
x21 - x20 - x19 + x18 - x17 + 6x16 - 7x15 + 2x14 - 4x13 + 5x12 + 9x11 - 17x10 + 11x9 - 4x8 - 3x7 + 9x6 - 6x5 - x4 + 3x3 - x2 - x + 1 |
\( -\,184607^{5} \) |
21T38 |
Trivial
(GRH)
|
| 21.3.270061427296836406180775407.1 |
x21 - 4x18 - x17 + x16 + 7x15 + x14 - 6x13 - 11x12 + 2x11 + 10x10 + 14x9 - 2x8 - 5x7 - 6x6 + 2x5 - 2x4 - 3x3 + 2x2 - 1 |
\( -\,193327^{5} \) |
21T38 |
Trivial
(GRH)
|
| 21.3.336444035684435024524918784.1 |
x21 - 5x20 + 11x19 - 5x18 - 29x17 + 64x16 - 22x15 - 117x14 + 218x13 - 124x12 - 76x11 + 132x10 - 38x9 + 31x8 - 168x7 + 204x6 - 47x5 - 120x4 + 134x3 - 63x2 + 13x - 1 |
\( -\,2^{14}\cdot 11^{13}\cdot 29^{6} \) |
21T57 |
Trivial
(GRH)
|
| 21.3.930871627030827422699634607.1 |
x21 - 5x20 + 36x18 - 35x17 - 108x16 + 155x15 + 176x14 - 338x13 - 129x12 + 413x11 - 50x10 - 234x9 + 162x8 - 66x7 - 51x6 + 196x5 - 92x4 - 98x3 + 71x2 - 10x - 25 |
\( -\,151^{2}\cdot 2377^{2}\cdot 193327^{3} \) |
21T139 |
Trivial
(GRH)
|
| 21.3.4266945093472415611428661007.1 |
x21 - x20 - 7x19 + 6x18 + 16x17 - 27x16 + 3x15 + 119x14 + 23x13 - 181x12 - 153x11 + 154x10 + 417x9 - 133x8 - 395x7 + 153x6 + 61x5 - 33x4 + 2x3 + 7x2 - 2x - 1 |
\( -\,7^{14}\cdot 184607^{3} \) |
21T56 |
Trivial
(GRH)
|
| 21.3.4297390112987454978404646912.1 |
x21 - x20 + 9x19 - 7x18 + 35x17 - 27x16 + 83x15 - 61x14 + 123x13 - 111x12 + 163x11 - 225x10 + 213x9 - 253x8 + 177x7 - 167x6 + 192x5 - 180x4 + 136x3 - 76x2 - 12x + 4 |
\( -\,2^{38}\cdot 3^{18}\cdot 7^{9} \) |
$SO(3,7)$ (as 21T20) |
Trivial
(GRH)
|
| 21.3.4900609474961156001559784767.1 |
x21 - x20 - 2x19 + 9x18 - 8x17 - 16x16 + 40x15 + 25x14 - 4x13 - 178x12 - 112x11 + 286x10 + 394x9 - 392x8 - 175x7 + 201x6 - 68x5 - 36x4 + 30x3 - 4x2 - 4x + 1 |
\( -\,7^{14}\cdot 193327^{3} \) |
21T56 |
Trivial
(GRH)
|
| 21.3.7146646609494406531041460224.1 |
x21 - 3x20 - 4x19 + 16x18 - 9x17 - 33x16 + 52x15 + 12x14 - 136x13 + 96x12 + 180x11 - 260x10 - 144x9 + 312x8 + 44x7 - 220x6 + 15x5 + 59x4 - 16x3 + 36x2 - 31x + 1 |
\( -\,2^{64}\cdot 3^{18} \) |
$SO(3,7)$ (as 21T20) |
Trivial
(GRH)
|
| 21.3.8971378199137136745057872231.1 |
x21 - x20 + 3x19 + 4x18 + 8x17 - 12x16 + 9x15 + 113x14 - 287x13 + 404x12 - 526x11 + 1106x10 - 2438x9 + 2381x8 - 2385x7 + 3637x6 - 6756x5 + 4734x4 - 3615x3 + 1513x2 - 2017x - 1319 |
\( -\,7^{2}\cdot 13^{2}\cdot 71^{9}\cdot 4861^{2} \) |
21T76 |
Trivial
(GRH)
|
| 21.3.10367263422675536780303271503.1 |
x21 - 6x20 - x19 + 72x18 - 100x17 - 299x16 + 733x15 + 386x14 - 2195x13 + 634x12 + 3126x11 - 2357x10 - 2090x9 + 2868x8 + 87x7 - 1535x6 + 673x5 + 170x4 - 243x3 + 89x2 - 15x + 1 |
\( -\,11^{4}\cdot 103^{4}\cdot 184607^{3} \) |
21T130 |
Trivial
(GRH)
|
| 21.3.19019216778782670169504453271.1 |
x21 - 9x20 + 23x19 + 24x18 - 196x17 + 152x16 + 587x15 - 1008x14 - 562x13 + 2180x12 - 404x11 - 2259x10 + 1317x9 + 1079x8 - 1081x7 - 177x6 + 477x5 - 106x4 - 81x3 + 53x2 - 12x + 1 |
\( -\,67^{2}\cdot 71^{9}\cdot 9613^{2} \) |
21T76 |
Trivial
(GRH)
|
| 21.3.20735011601517857380131405824.1 |
x21 - 4x20 + 8x19 - 12x18 + 12x17 - 16x16 + 44x15 - 94x14 + 160x13 - 200x12 + 184x11 - 132x10 + 52x9 - 8x7 + 4x6 + 16x4 - 36x3 + 32x2 - 16x + 4 |
\( -\,2^{20}\cdot 11^{7}\cdot 317^{6} \) |
21T27 |
Trivial
(GRH)
|
| 21.3.20735011601517857380131405824.2 |
x21 - 2x20 + 2x19 - 4x16 - 6x15 + 8x14 - 16x13 + 30x12 - 24x11 + 22x10 - 48x9 - 4x8 - 30x7 + 8x6 - 4x5 - 12x4 - 10x3 + 12x2 - 4x + 2 |
\( -\,2^{20}\cdot 11^{7}\cdot 317^{6} \) |
21T27 |
Trivial
(GRH)
|
| 21.3.31095511042786085990206459319.1 |
x21 - x20 - 7x19 + 6x18 + 3x17 - 30x16 + 72x15 + 134x14 - 49x13 - 195x12 - 375x11 + 190x10 + 878x9 - 233x8 - 491x7 + 177x6 + 32x5 - 47x4 + 21x3 + 10x2 - 4x - 1 |
\( -\,7^{14}\cdot 71^{9} \) |
$C_3\times D_7$ (as 21T3) |
Trivial
(GRH)
|
| 21.3.142304167851792866305606535751.1 |
x21 + 2x19 - 11x17 - 27x16 - 82x15 - 60x14 - 211x13 - 21x12 - 494x11 + 177x10 - 781x9 + 699x8 - 1096x7 + 966x6 - 737x5 + 417x4 - 128x3 + 18x2 + 18x - 9 |
\( -\,3^{20}\cdot 151^{9} \) |
21T52 |
Trivial
(GRH)
|
| 21.3.142304167851792866305606535751.2 |
x21 - 4x19 - 2x18 - 5x17 + 58x16 - 25x15 - 201x14 + 345x13 - 93x12 + 228x11 + 426x10 - 758x9 - 54x8 + 149x7 - 473x6 - 1772x5 - 2981x4 - 1405x3 + 378x2 + 18x - 117 |
\( -\,3^{20}\cdot 151^{9} \) |
21T52 |
Trivial
(GRH)
|
| 21.3.143926122875821803405026699823.1 |
x21 - 12x19 - 4x18 + 72x17 + 21x16 - 261x15 - 72x14 + 678x13 + 58x12 - 1062x11 - 285x10 + 513x9 + 1188x8 - 768x7 - 2702x6 + 792x5 + 1485x4 - 865x3 - 342x2 + 183x - 47 |
\( -\,3^{28}\cdot 184607^{3} \) |
21T130 |
Trivial
(GRH)
|
| 21.3.273379262499112817938520460419.1 |
x21 - 21x19 - 3x18 + 186x17 + 51x16 - 901x15 - 354x14 + 2589x13 + 1292x12 - 4479x11 - 2667x10 + 4522x9 + 3132x8 - 2424x7 - 2026x6 + 438x5 + 534x4 - 63x2 - 15x - 1 |
\( -\,23^{7}\cdot 113\cdot 710546119470924629 \) |
21T162 |
Trivial
(GRH)
|
| 21.3.378818692265664781682717625943.1 |
x21 - x14 - 2x7 + 1 |
\( -\,7^{35} \) |
$C_7:(C_3\times D_7)$ (as 21T16) |
Trivial
(GRH)
|
| 21.3.378818692265664781682717625943.2 |
x21 - 4x14 + 3x7 + 1 |
\( -\,7^{35} \) |
$C_7:(C_3\times D_7)$ (as 21T16) |
Trivial
(GRH)
|
| 21.3.378818692265664781682717625943.3 |
x21 - x14 - 9x7 + 1 |
\( -\,7^{35} \) |
$F_7$ (as 21T4) |
Trivial
(GRH)
|
| 21.3.822552053520401820057771484375.1 |
x21 - 9x20 + 39x19 - 110x18 + 212x17 - 254x16 + 72x15 + 444x14 - 1230x13 + 2243x12 - 3572x11 + 5129x10 - 6067x9 + 5990x8 - 5448x7 + 5112x6 - 4212x5 + 3001x4 - 1825x3 + 903x2 - 185x + 211 |
\( -\,5^{9}\cdot 11^{7}\cdot 43^{10} \) |
$S_3\times D_7$ (as 21T8) |
Trivial
(GRH)
|
| 21.3.953896806899772096335364351819.1 |
x21 - 5x20 + 14x19 - 30x18 + 81x17 - 198x16 + 312x15 - 259x14 - 31x13 + 395x12 - 455x11 + 311x10 + 131x9 - 101x8 + 292x7 + 104x6 + 29x5 + 133x4 + 67x3 + 11x2 + 4x + 1 |
\( -\,3^{4}\cdot 11^{9}\cdot 13^{12}\cdot 463^{2} \) |
21T98 |
Trivial
(GRH)
|
| 21.3.1078228439505013455412874919936.1 |
x21 - 6x19 - 6x18 + 36x17 + 30x16 - 138x15 - 36x14 + 447x13 - 10x12 - 1071x11 + 888x10 + 1111x9 - 3042x8 + 993x7 + 2302x6 - 1764x5 + 648x4 - 800x3 + 864x2 - 576x + 128 |
\( -\,2^{14}\cdot 3^{21}\cdot 184607^{3} \) |
21T152 |
$[2]$
(GRH)
|
| 21.3.1078228439505013455412874919936.2 |
x21 - 3x19 - 2x18 - 9x17 - 12x16 - 4x15 + 81x13 + 216x12 + 459x11 + 906x10 + 367x9 - 2196x8 - 6807x7 - 14494x6 - 22572x5 - 23256x4 - 15184x3 - 6048x2 - 1344x - 128 |
\( -\,2^{14}\cdot 3^{21}\cdot 184607^{3} \) |
21T152 |
Trivial
(GRH)
|
| 21.3.7655337671796811085236857471811.1 |
x21 - 6x20 + 19x19 - 35x18 + 34x17 - 27x16 + 33x15 - 73x14 + 37x13 + 44x12 + 137x11 - 33x10 + 60x9 + 177x8 + 243x7 - 219x6 - 876x5 - 1332x4 - 1192x3 - 736x2 - 288x - 64 |
\( -\,7^{14}\cdot 29^{3}\cdot 77351^{3} \) |
21T45 |
Trivial
(GRH)
|
| 21.3.7857627321843320792892969664512.1 |
x21 + 3x19 + 18x17 - 54x16 + 58x15 - 90x14 - 75x13 + 288x12 - 486x11 + 1380x10 - 1915x9 + 2988x8 - 3399x7 + 1690x6 - 2232x5 - 384x4 - 1344x3 - 384x + 128 |
\( -\,2^{14}\cdot 3^{21}\cdot 71^{9} \) |
21T131 |
Trivial
(GRH)
|
| 21.3.9785353109399805100134419972096.1 |
x21 - x20 - 10x19 + 8x18 + 32x17 - 59x16 + 7x15 + 422x14 + 190x13 - 795x12 - 1054x11 + 695x10 + 3497x9 - 381x8 - 4108x7 + 1137x6 + 364x5 - 117x4 + x3 + 12x2 - 3x - 1 |
\( -\,2^{14}\cdot 37^{7}\cdot 184607^{3} \) |
21T74 |
Trivial
(GRH)
|
| 21.3.11238530872385902708009257189376.1 |
x21 - x20 - 3x19 + 15x18 - 14x17 - 42x16 + 112x15 + 113x14 + 10x13 - 937x12 - 860x11 + 1848x10 + 3892x9 - 2944x8 - 2961x7 + 1339x6 - 176x5 - 182x4 + 74x3 - 4x2 - 6x + 1 |
\( -\,2^{14}\cdot 37^{7}\cdot 193327^{3} \) |
21T74 |
Trivial
(GRH)
|
| 21.3.12777737809210143774260519108727.1 |
x21 - 3x14 - 6x7 - 1 |
\( -\,3^{28}\cdot 7^{21} \) |
21T24 |
Trivial
(GRH)
|
| 21.3.12777737809210143774260519108727.2 |
x21 - 3x7 - 1 |
\( -\,3^{28}\cdot 7^{21} \) |
21T24 |
Trivial
(GRH)
|
| 21.3.12777737809210143774260519108727.3 |
x21 - 9x14 + 15x7 + 1 |
\( -\,3^{28}\cdot 7^{21} \) |
$C_3\times F_7$ (as 21T9) |
Trivial
(GRH)
|
| 21.3.86433900540276528721822666309632.1 |
x21 - 2x18 - 18x17 + 12x16 + 93x15 + 252x14 + 756x13 + 424x12 - 846x11 - 3942x10 - 12420x9 - 20592x8 - 30729x7 - 35272x6 - 30168x5 - 18600x4 - 8512x3 - 2880x2 - 768x - 128 |
\( -\,2^{14}\cdot 3^{21}\cdot 11\cdot 71^{9} \) |
21T131 |
Trivial
(GRH)
|
| 21.3.140546066200987919382387150626943.1 |
x21 - 6x20 + 12x19 + 3x18 - 60x17 + 108x16 - 18x15 - 225x14 + 357x13 - 89x12 - 387x11 + 522x10 - 121x9 - 312x8 + 315x7 - 47x6 - 108x5 + 75x4 - 8x3 - 12x2 + 6x - 1 |
\( -\,3^{18}\cdot 23^{7}\cdot 10322161^{2} \) |
21T156 |
Trivial
(GRH)
|
| 21.3.160091556105803523932869333700219.1 |
x21 - 3x20 + 3x19 - 2x18 - 3x17 + 11x16 - 25x15 + 45x14 - 52x13 + 43x12 + 51x11 - 121x10 + 143x9 - 83x8 - 62x7 + 95x6 - 203x5 + 45x4 - 50x3 - 26x2 + 3x - 7 |
\( -\,11^{9}\cdot 13^{12}\cdot 37^{2}\cdot 1459^{2} \) |
21T98 |
Trivial
(GRH)
|
| 21.3.171648210515488829655228363467583.1 |
x21 - 6x20 + 12x19 + 5x18 - 66x17 + 108x16 + 6x15 - 261x14 + 345x13 - 11x12 - 453x11 + 474x10 - 33x9 - 336x8 + 279x7 - 19x6 - 108x5 + 69x4 - 6x3 - 12x2 + 6x - 1 |
\( -\,3^{18}\cdot 7^{4}\cdot 23^{7}\cdot 232801^{2} \) |
21T156 |
Trivial
(GRH)
|
| 21.3.372153638957891448013587938820096.1 |
x21 + 11x19 - 8x18 + 72x17 - 48x16 + 204x15 + 249x13 + 376x12 + 18x11 + 62x10 - 473x9 - 1008x8 - 975x7 + 192x6 - 324x5 + 936x4 + 368x3 - 576x2 - 128x + 128 |
\( -\,2^{14}\cdot 3^{36}\cdot 73^{6} \) |
21T151 |
Trivial
(GRH)
|
| 21.3.374031156573051227998849803993088.1 |
x21 - 6x20 + x19 + 53x18 - 27x17 - 293x16 - 9x15 + 1527x14 + 243x13 - 5106x12 - 1574x11 + 12477x10 + 3557x9 - 22537x8 + 2995x7 + 24604x6 - 19343x5 - 8523x4 + 22177x3 - 14282x2 + 4522x - 290 |
\( -\,2^{14}\cdot 7^{15}\cdot 37^{10} \) |
$S_3\times F_7$ (as 21T15) |
Trivial
(GRH)
|
| 21.3.837604276918124655203492919754752.1 |
x21 - 6x20 + 13x19 - 17x18 + 21x17 - 45x16 + 82x15 - 15x14 + 21x13 - 84x12 + 93x11 + 37x10 - 137x9 - 497x8 - 444x7 - 317x6 - 346x5 - 656x4 - 808x3 - 640x2 - 288x - 64 |
\( -\,2^{14}\cdot 3^{7}\cdot 13^{3}\cdot 31^{3}\cdot 47^{7}\cdot 89^{3} \) |
21T62 |
Trivial
(GRH)
|
| 21.3.868742059496237220358847069077504.1 |
x21 - x14 - 3x7 + 1 |
\( -\,2^{14}\cdot 7^{21}\cdot 37^{7} \) |
21T29 |
Trivial
(GRH)
|