Learn more about

Further refine search

Results (displaying matches 1-50 of 246) Next

Label Polynomial Discriminant Galois group Class group
21.3.1078228439505013455412874919936.1 x21 - 6x19 - 6x18 + 36x17 + 30x16 - 138x15 - 36x14 + 447x13 - 10x12 - 1071x11 + 888x10 + 1111x9 - 3042x8 + 993x7 + 2302x6 - 1764x5 + 648x4 - 800x3 + 864x2 - 576x + 128 \( -\,2^{14}\cdot 3^{21}\cdot 184607^{3} \) 21T152 $[2]$ (GRH)
21.1.21487929345620722812146586898401.1 x21 - 9x20 + 37x19 - 84x18 + 105x17 - 62x16 + 92x15 - 450x14 + 800x13 + 216x12 - 1254x11 - 2043x10 + 6711x9 - 3102x8 - 7x7 - 2603x6 + 6489x5 - 6487x4 + 3977x3 - 1257x2 + 160x + 1 \( 3^{20}\cdot 151^{10} \) 21T51 $[3]$ (GRH)
21.3.1395088421598327334260620375359488.1 x21 - 6x20 + 27x19 - 106x18 + 291x17 - 654x16 + 1319x15 - 2328x14 + 3921x13 - 5612x12 + 7467x11 - 10410x10 + 10203x9 - 11046x8 + 13119x7 - 7050x6 + 8664x5 - 6660x4 + 2044x3 - 2778x2 + 1104x - 62 \( -\,2^{18}\cdot 3^{28}\cdot 7^{17} \) $C_3\times F_7$ (as 21T9) $[3]$ (GRH)
21.3.1395088421598327334260620375359488.2 x21 - 21x19 - 2x18 + 189x17 - 843x15 + 126x14 + 1869x13 - 1072x12 - 2457x11 + 7770x10 + 1395x9 - 24948x8 - 9723x7 + 52888x6 + 40320x5 - 48594x4 - 75620x3 - 9702x2 + 28266x + 11494 \( -\,2^{18}\cdot 3^{28}\cdot 7^{17} \) $C_3\times F_7$ (as 21T9) $[3]$ (GRH)
21.1.2322524889444393135652695649026048.1 x21 - 7x20 + 11x19 - x18 + 29x17 - 31x16 - 207x15 + 283x14 + 178x13 - 774x12 + 1676x11 - 1948x10 - 1140x9 + 7012x8 - 10652x7 + 6060x6 + 7976x5 - 23032x4 + 27464x3 - 19144x2 + 7592x - 1352 \( 2^{33}\cdot 3^{19}\cdot 7^{17} \) $S_3\times F_7$ (as 21T15) $[3]$ (GRH)
21.3.176088256709912967722303227668133447.1 x21 + 7x19 - 3x18 - 3x17 - 16x16 - 353x15 - 213x14 - 420x13 - 916x12 + 2308x11 + 2660x10 + 1560x9 + 6188x8 - 3301x7 - 10148x6 - 6715x5 + 1703x4 + 9951x3 + 12672x2 + 11237x + 7785 \( -\,7^{17}\cdot 31^{14} \) $C_3\times F_7$ (as 21T9) $[3]$ (GRH)
21.3.240111817160475801918451219385024512.1 x21 - 7x20 + 27x19 - 19x18 - 185x17 + 661x16 + 75x15 - 4907x14 + 5248x13 + 17006x12 - 24814x11 - 42058x10 + 51928x9 + 130100x8 - 180216x7 - 69004x6 + 106640x5 + 97712x4 - 82628x3 - 16944x2 + 21492x + 2484 \( -\,2^{18}\cdot 7^{17}\cdot 13^{14} \) $C_3\times F_7$ (as 21T9) $[3]$ (GRH)
21.3.240111817160475801918451219385024512.2 x21 - 7x20 + 23x19 - 59x18 + 159x17 - 439x16 + 1181x15 - 2881x14 + 6088x13 - 11638x12 + 20752x11 - 35784x10 + 61024x9 - 90396x8 + 95820x7 - 47992x6 - 56240x5 + 172576x4 - 215232x3 + 149248x2 - 53248x + 5888 \( -\,2^{18}\cdot 7^{17}\cdot 13^{14} \) $C_3\times F_7$ (as 21T9) $[3]$ (GRH)
21.1.297767057903624960000000000000000000.1 x21 + 21x19 - 2x18 + 209x17 - 26x16 + 1081x15 - 450x14 + 2345x13 - 2990x12 - 107x11 - 5360x10 - 1817x9 + 13424x8 + 28897x7 + 59776x6 + 72068x5 + 63024x4 + 32992x3 + 7616x2 + 576x + 64 \( 2^{26}\cdot 5^{19}\cdot 7^{17} \) $S_3\times F_7$ (as 21T15) $[3]$ (GRH)
21.7.887641117397815509982736884947746816.1 x21 - 4x20 - 12x19 + 58x18 + 74x17 - 382x16 - 686x15 + 4800x14 - 12932x13 + 28358x12 - 26452x11 - 81018x10 + 310564x9 - 409604x8 + 110816x7 + 349094x6 - 498694x5 + 323368x4 - 122288x3 + 28698x2 - 4026x + 266 \( -\,2^{20}\cdot 7^{12}\cdot 11^{19} \) $S_3\times C_7:C_3$ (as 21T11) $[2]$ (GRH)
21.3.2096480451371533622031253968968078623.1 x21 - 9x20 + 41x19 - 132x18 + 322x17 - 791x16 + 1785x15 - 3220x14 + 3122x13 - 2044x12 + 2989x11 - 13769x10 + 24304x9 - 14945x8 + 6321x7 + 1372x6 - 4802x5 - 1029x4 + 8232x3 - 2401x2 - 1029x + 343 \( -\,7^{17}\cdot 37^{14} \) $C_3\times F_7$ (as 21T9) $[3]$ (GRH)
21.3.36650808577573618289031243371651268608.1 x21 - 7x19 - 42x18 + 21x17 + 364x16 + 749x15 - 454x14 - 4781x13 - 9016x12 - 1813x11 + 8106x10 + 2471x9 - 39956x8 + 12367x7 + 34118x6 - 37072x5 - 7392x4 + 11424x3 + 448x2 - 1792x - 512 \( -\,2^{36}\cdot 7^{23}\cdot 11^{7} \) 21T23 $[3]$ (GRH)
21.1.42127190673004818515087070385007473173.1 x21 - 12x18 + 134x15 + 2141x12 - 33744x9 - 2154274x6 + 120436778x3 - 648178003 \( 3^{7}\cdot 11^{4}\cdot 71^{9}\cdot 307^{2}\cdot 17449^{2} \) 21T93 $[3]$ (GRH)
21.3.48725579790519404577278592926363680768.1 x21 - 2x20 + 3x19 + 28x18 - 103x17 + 158x16 + 231x15 - 2386x14 + 4533x13 + 2060x12 - 26199x11 + 48058x10 + 15699x9 - 114172x8 + 99573x7 - 91574x6 - 382958x5 + 518290x4 + 2159304x3 - 2056094x2 - 3898716x + 3849502 \( -\,2^{18}\cdot 7^{17}\cdot 19^{14} \) $C_3\times F_7$ (as 21T9) $[3]$ (GRH)
21.3.354859304882011896712926901003999617447.1 x21 - x20 - 10x19 + 26x18 - 175x17 + 893x16 - 2535x15 + 4105x14 - 5396x13 + 15522x12 - 38866x11 + 99374x10 - 196980x9 + 167386x8 - 522437x7 + 1728873x6 - 1333540x5 - 718864x4 - 722371x3 + 4119359x2 - 3755923x + 1239967 \( -\,3^{18}\cdot 7^{17}\cdot 13^{14} \) $C_3\times F_7$ (as 21T9) $[3]$ (GRH)
21.3.354859304882011896712926901003999617447.2 x21 - 4x20 - 13x19 + 92x18 - 100x17 - 685x16 + 3114x15 - 6722x14 + 11287x13 - 27129x12 + 85460x11 - 229903x10 + 486885x9 - 823628x8 + 1106479x7 - 1124295x6 + 783536x5 - 296659x4 - 6943x3 + 57281x2 - 20482x + 2527 \( -\,3^{18}\cdot 7^{17}\cdot 13^{14} \) $C_3\times F_7$ (as 21T9) $[3]$ (GRH)
21.1.461168601848581377418385982521381124421.1 x21 + 4x - 1 \( 9011\cdot 15319\cdot 197364859\cdot 16927253439956600727491 \) 21T164 $[2]$ (GRH)
21.3.942050611570682143073376679874187231232.2 x21 - 286x14 - 800x7 + 16384 \( -\,2^{18}\cdot 7^{15}\cdot 31^{14} \) $C_3\times F_7$ (as 21T9) $[7]$ (GRH)
21.7.1090199518881106278058570421221868699648.1 x21 - 37x19 - 7x18 + 631x17 - 160x16 - 7660x15 + 5137x14 + 56640x13 - 76851x12 - 243751x11 + 479095x10 + 411482x9 - 1347008x8 + 92559x7 + 992616x6 - 416686x5 + 955747x4 + 870892x3 - 1275931x2 - 1256035x - 284261 \( -\,2^{18}\cdot 7^{12}\cdot 23^{7}\cdot 211^{6} \) 21T32 $[7]$ (GRH)
21.1.4099043553497682482205491992112483817453.1 x21 - 178x18 + 13541x15 - 570499x12 + 14371045x9 - 216346630x6 + 1801246220x3 - 6393730193 \( 3^{7}\cdot 71^{9}\cdot 599^{2}\cdot 10674007^{2} \) 21T93 $[3]$ (GRH)
21.21.4539403286895028130634165104558075019264.1 x21 - 90x19 - 54x18 + 3180x17 + 3024x16 - 58772x15 - 67734x14 + 629568x13 + 784368x12 - 4069848x11 - 5110992x10 + 15949576x9 + 19347408x8 - 36320292x7 - 42371712x6 + 42009624x5 + 50881608x4 - 15240528x3 - 26180496x2 - 5843664x - 190728 \( 2^{18}\cdot 3^{28}\cdot 31^{14} \) $C_7:C_3$ (as 21T2) $[3]$ (GRH)
21.3.5033649563743052226497040779492356773823.1 x21 - 33x14 + 215x7 + 1 \( -\,7^{21}\cdot 37^{14} \) $C_3\times F_7$ (as 21T9) $[7]$ (GRH)
21.3.5033649563743052226497040779492356773823.2 x21 - 44x14 - 181x7 + 1 \( -\,7^{21}\cdot 37^{14} \) $C_3\times F_7$ (as 21T9) $[7]$ (GRH)
21.3.6097778277093810742837573115958479814656.1 x21 - 7x20 - 7x19 + 175x18 - 301x17 - 1659x16 + 7147x15 - 2403x14 - 36253x13 + 42441x12 + 180299x11 - 484547x10 - 15883x9 + 1455531x8 - 1731731x7 - 623189x6 + 3164084x5 - 2658810x4 - 245532x3 + 1776908x2 - 1293152x + 262088 \( -\,2^{33}\cdot 7^{23}\cdot 11^{10} \) 21T23 $[3]$ (GRH)
21.7.12714375279672778294362958922197224914944.1 x21 - 3x20 + x19 - 42x18 - 157x17 + 310x16 + 5798x15 - 3709x14 - 92464x13 + 474108x12 - 2368117x11 + 9006061x10 - 20442035x9 + 24167098x8 + 18849199x7 - 129416738x6 + 120608306x5 + 151200437x4 - 174966569x3 - 172336121x2 + 129418146x + 31235087 \( -\,2^{18}\cdot 29^{6}\cdot 31^{7}\cdot 379^{6} \) 21T32 $[7]$ (GRH)
21.21.13136233521869762226411268456105692626944.1 x21 - x20 - 85x19 - 44x18 + 2809x17 + 5152x16 - 41166x15 - 131957x14 + 189850x13 + 1279532x12 + 1063163x11 - 3442335x10 - 8884217x9 - 7903686x8 - 1827259x7 + 1604980x6 + 1042524x5 + 68775x4 - 81417x3 - 15141x2 + 1372x + 343 \( 2^{18}\cdot 7^{14}\cdot 43^{14} \) $C_7:C_3$ (as 21T2) $[3]$ (GRH)
21.3.14978582190038884880930805105486631888339.1 x21 - 3x20 - 5x19 - 43x18 + 287x17 - 286x16 + 309x15 - 5832x14 + 14849x13 + 23772x12 - 100540x11 + 251238x10 - 954894x9 - 83566x8 + 3314973x7 + 1174509x6 + 5584313x5 - 34579327x4 - 21371158x3 + 98029199x2 + 27253836x - 127427549 \( -\,7^{3}\cdot 13^{7}\cdot 109^{6}\cdot 644179747^{2} \) 21T136 $[3]$ (GRH)
21.7.31032827270403258915448227917250560000000.1 x21 - 63x19 - 84x18 + 1512x17 + 3850x16 - 15029x15 - 63668x14 + 19355x13 + 408198x12 + 542696x11 - 448728x10 - 1801933x9 - 2364768x8 - 3841877x7 - 7427812x6 - 9136848x5 - 5209666x4 + 684425x3 + 2417492x2 + 819441x - 32894 \( -\,2^{20}\cdot 5^{7}\cdot 7^{35} \) 21T23 $[3]$ (GRH)
21.5.37877966044500313823897559260772576526336.1 x21 - 9x20 + x19 + 247x18 - 1128x17 + 1844x16 + 1538x15 - 10782x14 + 6884x13 + 36114x12 - 29952x11 - 179184x10 + 356326x9 + 190336x8 - 1475463x7 + 2097737x6 - 1307021x5 + 514117x4 - 539862x3 + 463496x2 - 103930x - 22322 \( 2^{24}\cdot 11^{18}\cdot 67^{8} \) $\PSL(3,4)$ (as 21T67) $[3]$ (GRH)
21.5.37877966044500313823897559260772576526336.2 x21 - 4x20 - 34x19 + 250x18 + 49x17 - 4806x16 + 10924x15 + 35134x14 - 181415x13 + 42258x12 + 1174704x11 - 2046920x10 - 2612752x9 + 11070150x8 - 4343266x7 - 21914184x6 + 22487749x5 + 21732094x4 - 35335382x3 - 9878676x2 + 29752822x - 9397944 \( 2^{24}\cdot 11^{18}\cdot 67^{8} \) $\PSL(3,4)$ (as 21T67) $[3]$ (GRH)
21.21.56296849895429213104110710203449262473216.1 x21 - 105x19 - 119x18 + 4599x17 + 10290x16 - 103334x15 - 360885x14 + 1118670x13 + 6432475x12 - 1703289x11 - 58140705x10 - 81978176x9 + 197166396x8 + 700361361x7 + 439003348x6 - 1276860228x5 - 3090183579x4 - 3073057932x3 - 1588530069x2 - 391156857x - 28779219 \( 2^{18}\cdot 3^{28}\cdot 7^{26} \) $C_7:C_3$ (as 21T2) $[3]$ (GRH)
21.1.60610990762506365069234820150880000000000.1 x21 + 63x19 - 56x18 + 1610x17 - 2520x16 + 23121x15 - 46272x14 + 210994x13 - 459704x12 + 1276149x11 - 2623516x10 + 5090785x9 - 8563100x8 + 12268682x7 - 15308580x6 + 15211588x5 - 11151728x4 + 5522776x3 - 1800400x2 + 419328x - 65792 \( 2^{14}\cdot 5^{10}\cdot 7^{35} \) 21T23 $[3]$ (GRH)
21.3.72011138722425633565208857577376396922983.1 x21 - 7x20 - 10x19 + 149x18 + 8x17 - 1375x16 + 513x15 + 1633x14 + 27157x13 - 52788x12 - 327079x11 + 1254566x10 + 736266x9 - 9563747x8 + 12752578x7 + 5924631x6 - 8676262x5 - 34239268x4 + 23180423x3 + 11077409x2 + 29642690x - 10983749 \( -\,3^{18}\cdot 7^{17}\cdot 19^{14} \) $C_3\times F_7$ (as 21T9) $[3]$ (GRH)
21.1.227911598834310569903130581367217291392841.1 x21 - 3x20 + 43x19 - 22x18 + 643x17 - 168x16 + 9322x15 - 4975x14 + 22402x13 - 76493x12 + 369038x11 - 673269x10 - 1084871x9 - 7262324x8 + 1057380x7 - 59828972x6 + 80384535x5 + 506225172x4 + 410279552x3 - 1834135886x2 - 1809587593x - 800223271 \( 11^{2}\cdot 13^{2}\cdot 71^{10}\cdot 1850356597^{2} \) 21T124 $[3]$ (GRH)
21.3.241787774691530742888323503970893214367744.1 x21 - 24x19 - 34x18 + 9x17 + 480x16 + 2410x15 + 2646x14 - 453x13 - 31052x12 + 16326x11 - 187728x10 - 267343x9 + 719244x8 - 6331761x7 - 8237756x6 - 12927024x5 - 9316032x4 - 7774096x3 - 4321152x2 - 1440384x - 480128 \( -\,2^{14}\cdot 3^{28}\cdot 11^{4}\cdot 31^{2}\cdot 71^{9} \) 21T122 $[3]$ (GRH)
21.1.255584000177209066521855556482192657874944.1 x21 + 6x - 2 \( 2^{20}\cdot 3^{21}\cdot 23\cdot 21227\cdot 137443\cdot 347254848874441 \) 21T164 $[2]$ (GRH)
21.21.781286945806524287560821363867897500532736.1 x21 - 7x20 - 85x19 + 600x18 + 2969x17 - 20148x16 - 58666x15 + 340921x14 + 762604x13 - 3106176x12 - 6541447x11 + 14463151x10 + 32672825x9 - 27520996x8 - 75363341x7 + 12806508x6 + 63845912x5 - 2336541x4 - 19620833x3 + 1847525x2 + 1883508x - 325961 \( 2^{18}\cdot 13^{14}\cdot 31^{14} \) $C_7:C_3$ (as 21T2) $[3]$ (GRH)
21.3.1096679211019876560593417678536851779173227.1 x21 - 182x18 + 14184x15 - 613561x12 + 15908935x9 - 247237787x6 + 2132151614x3 - 7870564153 \( -\,3^{7}\cdot 13^{6}\cdot 109^{6}\cdot 277^{2}\cdot 907^{2}\cdot 31327^{2} \) 21T118 $[3]$ (GRH)
21.3.1666765837467574334243731387700103650394843.1 x21 - 187x18 + 14987x15 - 667285x12 + 17825502x9 - 285687336x6 + 2543424776x3 - 9702940159 \( -\,3^{7}\cdot 11^{2}\cdot 13^{6}\cdot 19^{2}\cdot 71^{2}\cdot 109^{6}\cdot 653881^{2} \) 21T118 $[3, 3]$ (GRH)
21.1.2411985091362874914103350388868578157182109.1 x21 - 7x - 7 \( 7^{21}\cdot 23\cdot 9910909\cdot 18944120791806241 \) 21T164 $[3]$ (GRH)
21.3.2571214312996980646474746727059902452712523.1 x21 - 8x20 - 76x19 + 884x18 + 1041x17 - 38604x16 + 74646x15 + 796788x14 - 3559335x13 - 5594078x12 + 65454625x11 - 75134674x10 - 526445392x9 + 1767437868x8 + 294495843x7 - 11518426413x6 + 21096865710x5 + 6876151449x4 - 81727980749x3 + 134917517464x2 - 101919304966x + 31099656773 \( -\,3^{25}\cdot 13^{2}\cdot 73^{6}\cdot 3529^{2}\cdot 97609^{2} \) 21T140 $[3]$ (GRH)
21.21.4443788844232727236822935152611411648255209.1 x21 - 6x20 - 45x19 + 304x18 + 681x17 - 5892x16 - 2835x15 + 55011x14 - 24204x13 - 253860x12 + 274332x11 + 500406x10 - 903062x9 - 112956x8 + 1002705x7 - 558462x6 - 98895x5 + 163020x4 - 32917x3 - 5658x2 + 2316x - 173 \( 3^{32}\cdot 547^{10} \) $A_7$ (as 21T33) $[2]$ (GRH)
21.3.5516663961752188429459704285256595202031087.1 x21 - 963x14 + 1439x7 + 2187 \( -\,7^{21}\cdot 61^{14} \) $C_3\times F_7$ (as 21T9) $[7]$ (GRH)
21.3.5516663961752188429459704285256595202031087.2 x21 - 1572x14 - 4591x7 - 2187 \( -\,7^{21}\cdot 61^{14} \) $C_3\times F_7$ (as 21T9) $[7]$ (GRH)
21.3.5707572910555511153068160996700949842685179.1 x21 - 3x20 - 108x19 + 123x18 + 5442x17 + 3396x16 - 152836x15 - 344844x14 + 2292597x13 + 9796933x12 - 10997643x11 - 130149309x10 - 166799713x9 + 659286855x8 + 2506068363x7 + 1933441494x6 - 6878938746x5 - 22716122469x4 - 32835062271x3 - 27152679840x2 - 12561579456x - 2552276719 \( -\,3^{9}\cdot 37^{3}\cdot 2381^{3}\cdot 232597^{2}\cdot 2799847^{2} \) 21T144 $[3]$ (GRH)
21.7.8026392053570511333903758817888858066542592.1 x21 - 21x19 - 5x18 + 189x17 + 90x16 - 1177x15 - 675x14 + 6315x13 + 1984x12 - 25983x11 + 2517x10 + 76399x9 - 31374x8 - 174051x7 + 139683x6 + 290088x5 - 453996x4 - 67056x3 + 594000x2 - 499968x + 147136 \( -\,2^{13}\cdot 3^{21}\cdot 97\cdot 149^{6}\cdot 211^{6} \) 21T151 $[2]$ (GRH)
21.5.14720060085349067194568080398784262958628864.1 x21 - 2x20 - 31x19 + 14x18 + 391x17 + 839x16 - 3642x15 - 12906x14 + 21946x13 + 71319x12 - 68080x11 - 360180x10 + 640978x9 + 2101569x8 - 6970238x7 - 4352809x6 + 28605427x5 + 1130039x4 - 63367644x3 - 20310040x2 + 139664899x - 45933317 \( 2^{14}\cdot 37^{2}\cdot 71^{4}\cdot 211^{2}\cdot 8623^{4}\cdot 10243^{2} \) 21T150 $[3]$ (GRH)
21.3.19309819514132220094709973599783097028313088.1 x21 - 14550x14 - 525816x7 + 2097152 \( -\,2^{18}\cdot 3^{28}\cdot 7^{29} \) $C_3\times F_7$ (as 21T9) $[3]$ (GRH)
21.3.19309819514132220094709973599783097028313088.2 x21 - 2592x14 - 620544x7 + 2097152 \( -\,2^{18}\cdot 3^{28}\cdot 7^{29} \) $C_3\times F_7$ (as 21T9) $[3]$ (GRH)
21.3.19309819514132220094709973599783097028313088.3 x21 - 1416x14 + 470784x7 + 2097152 \( -\,2^{18}\cdot 3^{28}\cdot 7^{29} \) $C_3\times F_7$ (as 21T9) $[6]$ (GRH)
Next

Download all search results for