Further refine search
Results (displaying matches 1-50 of at least 1000) Next
| Label | Polynomial | Discriminant | Galois group | Class group |
|---|---|---|---|---|
| 18.0.1206393352117083984375.1 | x18 - 6x17 + 21x16 - 51x15 + 87x14 - 102x13 + 48x12 + 90x11 - 234x10 + 298x9 - 156x8 - 120x7 + 354x6 - 384x5 + 273x4 - 132x3 + 45x2 - 9x + 1 | \( -\,3^{31}\cdot 5^{9} \) | $S_3 \times C_3$ (as 18T3) | $[2]$ |
| 18.0.2279403313291670831424.1 | x18 - 3x17 + 6x16 - 20x15 + 57x14 - 102x13 + 159x12 - 312x11 + 567x10 - 735x9 + 855x8 - 1155x7 + 1382x6 - 1122x5 + 567x4 - 172x3 + 33x2 - 6x + 1 | \( -\,2^{6}\cdot 3^{21}\cdot 23^{7} \) | 18T734 | $[2]$ (GRH) |
| 18.0.6342687480463779704832.4 | x18 - 6x16 + 21x14 - 45x12 + 63x10 - 36x8 - 27x6 + 81x4 - 54x2 + 27 | \( -\,2^{12}\cdot 3^{21}\cdot 23^{6} \) | 18T518 | $[2]$ |
| 18.0.6778308875544000000000.1 | x18 - 3x17 + 9x16 - 12x15 + 30x14 - 15x13 + 36x12 - 27x11 + 45x10 - 69x9 + 126x8 - 162x7 + 144x6 - 117x5 + 72x4 - 27x3 + 9 | \( -\,2^{12}\cdot 3^{25}\cdot 5^{9} \) | $S_3^2$ (as 18T11) | $[2]$ |
| 18.0.7086739046912000000000.1 | x18 - 6x17 + 28x16 - 102x15 + 296x14 - 696x13 + 1429x12 - 2684x11 + 4639x10 - 7178x9 + 9523x8 - 10268x7 + 8521x6 - 5202x5 + 2254x4 - 672x3 + 133x2 - 16x + 1 | \( -\,2^{18}\cdot 5^{9}\cdot 7^{12} \) | $S_3 \times C_3$ (as 18T3) | $[2]$ |
| 18.0.7278153735662003552256.1 | x18 + 3x14 + 24x12 + 3x10 - 66x8 - 27x6 + 36x4 + 36x2 + 6 | \( -\,2^{33}\cdot 3^{25} \) | $S_3^2$ (as 18T11) | $[2]$ |
| 18.0.10460353203000000000000.1 | x18 + 49x12 + 67x6 + 27 | \( -\,2^{12}\cdot 3^{21}\cdot 5^{12} \) | $C_3^2 : C_2$ (as 18T4) | $[3]$ |
| 18.0.11727564985436483639043.1 | x18 - 3x16 - 6x15 + 6x14 + 15x13 - 6x12 - 24x11 - 3x10 + 43x9 + 54x8 - 24x7 - 12x6 - 42x5 + 12x4 + 15x3 + 6x2 + 3x + 1 | \( -\,3^{25}\cdot 7^{12} \) | $He_3:C_2$ (as 18T21) | $[3]$ |
| 18.0.13418074738285807403008.1 | x18 + 10x16 - 2x15 + 46x14 - 8x13 + 75x12 + 34x11 - 7x10 + 80x9 + 8x8 - 34x7 + 209x6 - 32x5 - 42x4 + 30x3 + 11x2 - 4x + 1 | \( -\,2^{18}\cdot 13^{15} \) | $S_3 \times C_6$ (as 18T6) | $[2]$ |
| 18.0.18283008447003871936512.1 | x18 - x17 - 3x16 + 8x15 - 4x13 + 40x12 - 74x11 - 3x10 + 299x9 - 181x8 - 158x7 + 506x6 + 166x5 + 86x4 + 36x3 + 9x2 + x + 1 | \( -\,2^{26}\cdot 3^{9}\cdot 7^{12} \) | $S_3^2$ (as 18T11) | $[3]$ |
| 18.0.22174929740517389369344.1 | x18 - x16 - 4x14 - 4x12 + 30x10 + 26x8 - 72x6 - 40x4 + 61x2 + 19 | \( -\,2^{36}\cdot 19^{9} \) | 18T185 | $[2]$ |
| 18.0.22367896927548830134272.2 | x18 - 6x16 + 25x14 - 61x12 + 127x10 - 170x8 + 190x6 - 114x4 + 45x2 + 27 | \( -\,2^{12}\cdot 3^{9}\cdot 23^{6}\cdot 37^{4} \) | 18T775 | $[2]$ (GRH) |
| 18.0.23465261991844685929951.1 | x18 - 6x17 + 19x16 - 34x15 + 42x14 - 34x13 + 20x12 + 20x11 - 97x10 + 148x9 - 131x8 - 30x7 + 251x6 - 76x5 - 53x4 + 8x3 + 11x2 + 4x + 1 | \( -\,31^{15} \) | $S_3 \times C_3$ (as 18T3) | $[3]$ |
| 18.0.24930271280154907835063.1 | x18 - 3x17 + 7x16 - 8x15 + 35x14 - 28x13 + 110x12 - 162x11 + 286x10 - 260x9 + 262x8 - 100x7 + 124x6 - 126x5 + 105x4 - 43x3 + 21x2 - 6x + 1 | \( -\,7^{12}\cdot 23^{9} \) | $S_3 \times C_3$ (as 18T3) | $[3]$ |
| 18.0.36566016894007743873024.1 | x18 + 2x16 - 6x14 - 30x12 - 19x10 + 292x8 + 337x6 + 66x4 + 540x2 + 216 | \( -\,2^{27}\cdot 3^{9}\cdot 7^{12} \) | $S_3 \times C_3$ (as 18T3) | $[2]$ |
| 18.0.37980492079544000000000.1 | x18 - 6x17 + 26x16 - 79x15 + 210x14 - 448x13 + 876x12 - 1414x11 + 2146x10 - 2653x9 + 3166x8 - 2968x7 + 2738x6 - 1960x5 + 1344x4 - 753x3 + 318x2 - 34x + 71 | \( -\,2^{12}\cdot 5^{9}\cdot 7^{15} \) | $S_3 \times C_3$ (as 18T3) | $[2]$ |
| 18.0.37980492079544000000000.2 | x18 + x16 - 16x15 + 8x14 - 53x13 + 110x12 - 62x11 + 188x10 - 65x9 + 109x8 - 70x7 + 57x6 - 71x5 + 49x4 - 31x3 + 16x2 - 3x + 1 | \( -\,2^{12}\cdot 5^{9}\cdot 7^{15} \) | $S_3 \times C_6$ (as 18T6) | $[2]$ |
| 18.0.40310784000000000000000.1 | x18 - 7x17 + 20x16 - 22x15 - 20x14 + 88x13 - 86x12 - 40x11 + 149x10 - 65x9 - 60x8 + 60x7 + 70x6 - 10x4 + 38x3 + 44x2 + 20x + 4 | \( -\,2^{26}\cdot 3^{9}\cdot 5^{15} \) | $C_2\times S_3^2$ (as 18T29) | $[2]$ (GRH) |
| 18.0.41451359947637504606208.2 | x18 - 9x17 + 33x16 - 60x15 + 60x14 - 84x13 + 222x12 - 318x11 + 153x10 + 5x9 + 153x8 - 318x7 + 222x6 - 84x5 + 60x4 - 60x3 + 33x2 - 9x + 1 | \( -\,2^{26}\cdot 3^{31} \) | $S_3^2$ (as 18T11) | $[3]$ |
| 18.0.52301766015000000000000.1 | x18 + 9x16 - x15 + 27x14 - 6x13 + 46x12 - 27x11 + 123x10 - 83x9 + 234x8 - 54x7 + 118x6 + 48x5 + 132x4 + 108x3 + 336x2 + 264x + 184 | \( -\,2^{12}\cdot 3^{21}\cdot 5^{13} \) | $C_2\times C_3^2:S_3$ (as 18T52) | $[2]$ |
| 18.0.53137762492763568359375.1 | x18 - 4x16 - 6x14 + 64x12 - 145x10 + 279x8 - 446x6 + 206x4 + 341x2 + 335 | \( -\,5^{9}\cdot 67^{9} \) | $D_9$ (as 18T5) | $[2]$ |
| 18.0.54949782158942378487808.1 | x18 - 3x17 + 13x16 - 34x15 + 89x14 - 168x13 + 310x12 - 492x11 + 672x10 - 786x9 + 1036x8 - 1044x7 + 928x6 - 576x5 + 379x4 - 153x3 + 51x2 + 8x + 1 | \( -\,2^{12}\cdot 7^{15}\cdot 41^{4} \) | 18T201 | $[3]$ |
| 18.0.61004779879896000000000.1 | x18 + 12x16 - 6x15 + 54x14 - 42x13 + 109x12 - 90x11 + 45x10 - 32x9 - 99x8 + 30x7 - 17x6 + 30x4 + 8x3 + 9x2 + 6x + 1 | \( -\,2^{12}\cdot 3^{27}\cdot 5^{9} \) | $S_3 \times C_6$ (as 18T6) | $[2]$ |
| 18.0.65503383620958031970304.1 | x18 + 6x16 + 27x14 + 48x12 + 27x10 + 54x8 - 315x6 - 324x4 + 324x2 + 216 | \( -\,2^{33}\cdot 3^{27} \) | $S_3 \times C_6$ (as 18T6) | $[2]$ |
| 18.0.77209174535493375000000.1 | x18 - 9x12 - 27x9 + 324x6 + 324x3 + 216 | \( -\,2^{6}\cdot 3^{31}\cdot 5^{9} \) | $C_3^3:C_2^2$ (as 18T53) | $[2]$ |
| 18.0.81721509398437500000000.1 | x18 - 6x17 + 18x16 - 34x15 + 45x14 - 66x13 + 176x12 - 498x11 + 1104x10 - 1890x9 + 2523x8 - 2628x7 + 2139x6 - 1362x5 + 675x4 - 254x3 + 69x2 - 12x + 1 | \( -\,2^{8}\cdot 3^{21}\cdot 5^{15} \) | $C_2\times C_3^2:S_3$ (as 18T52) | $[2]$ |
| 18.0.82902719895275009212416.1 | x18 + 6x16 - 12x15 + 21x14 - 72x13 + 144x12 - 282x11 + 462x10 - 620x9 + 864x8 - 1122x7 + 1206x6 - 948x5 + 549x4 - 228x3 + 66x2 - 12x + 1 | \( -\,2^{27}\cdot 3^{31} \) | $S_3 \times C_3$ (as 18T3) | $[2]$ |
| 18.0.83769291871618924818432.1 | x18 - 3x17 + 3x16 + 9x14 - 45x13 + 102x12 - 105x11 + 123x10 - 110x9 + 147x8 - 183x7 + 207x6 - 198x5 + 144x4 - 120x3 + 96x2 - 96x + 64 | \( -\,2^{12}\cdot 3^{25}\cdot 17^{6} \) | $S_3^2$ (as 18T11) | $[3]$ |
| 18.0.86221016299768945573888.1 | x18 + 5x16 + 10x14 + 16x12 + 29x10 + 61x8 + 89x6 + 65x4 + 39x2 + 13 | \( -\,2^{24}\cdot 7^{12}\cdot 13^{5} \) | 18T282 | $[2]$ |
| 18.0.90466292782051905202183.1 | x18 - 2x17 + 4x16 + 5x15 + 13x14 - 16x13 + 41x12 - 37x11 + 69x10 - 186x9 + 472x8 - 593x7 + 672x6 - 521x5 + 389x4 - 176x3 + 75x2 - 14x + 1 | \( -\,7^{15}\cdot 138041^{2} \) | 18T286 | $[2]$ |
| 18.2.92225142947365783203125.1 | x18 + 2x16 - 3x15 - 14x14 + 18x13 - 79x12 + 154x11 - 297x10 + 475x9 - 701x8 + 794x7 - 869x6 + 586x5 - 428x4 + 108x3 + 54x2 - 23x - 19 | \( 5^{9}\cdot 241^{7} \) | 18T626 | $[2]$ |
| 18.0.93265559882184385363968.1 | x18 - 3x17 + 6x16 - 3x15 - 3x14 + 6x13 - 9x12 + 15x11 - 39x10 - 2x9 + 48x8 - 42x7 + 3x6 + 21x5 + 39x4 + 18x3 + 3x2 + 3x + 1 | \( -\,2^{24}\cdot 3^{33} \) | $C_2\times He_3:C_2$ (as 18T41) | $[3]$ |
| 18.0.96412994581196722733056.1 | x18 + 10x16 + 38x14 + 66x12 + 46x10 + 7x8 + 23x6 + 44x4 + 24x2 + 4 | \( -\,2^{16}\cdot 101^{2}\cdot 229^{6} \) | 18T556 | $[2]$ |
| 18.2.99714188227072000000000.1 | x18 - 4x17 - 3x16 + 28x15 - 11x14 - 62x13 + 40x12 + 42x11 - 22x10 + 26x9 - 9x8 - 16x7 - 73x6 - 154x5 - 29x4 - 2x3 - 44x2 - 8x - 1 | \( 2^{18}\cdot 5^{9}\cdot 41^{7} \) | 18T273 | $[2]$ |
| 18.0.105192903852687811100983.1 | x18 - 4x17 + 6x16 - 3x15 + 7x14 - 28x13 + 43x12 - 28x11 + 11x10 - 33x8 + 70x7 - 55x6 - 14x5 + 70x4 - 68x3 + 34x2 - 9x + 1 | \( -\,7^{15}\cdot 43^{4}\cdot 6481 \) | 18T766 | $[2]$ |
| 18.0.105226667788517176205647.1 | x18 - 6x17 + 17x16 - 26x15 + 40x14 - 98x13 + 214x12 - 180x11 + 94x10 + 240x9 - 166x8 - 346x7 + 387x6 + 144x5 + 183x4 + 45x3 + 21x2 + 3x + 1 | \( -\,7^{15}\cdot 53^{6} \) | $S_3 \times C_6$ (as 18T6) | $[2]$ |
| 18.0.118039224225889612726272.1 | x18 - 12x15 - 18x14 + 51x12 + 72x11 + 72x10 + 36x9 + 72x8 + 90x7 + 75x6 + 72x5 + 54x4 - 18x2 + 3 | \( -\,2^{18}\cdot 3^{37} \) | $C_3:S_4$ (as 18T40) | $[2]$ |
| 18.0.119087320609277524873216.1 | x18 + 9x16 + 37x14 + 93x12 + 158x10 + 187x8 + 149x6 + 69x4 + 15x2 + 1 | \( -\,2^{12}\cdot 229^{6}\cdot 449^{2} \) | 18T556 | $[2]$ |
| 18.0.120334583646716719921875.1 | x18 - 2x17 + 4x16 + 2x15 - 2x14 + 6x13 + 15x12 - 4x11 + 17x10 + 10x9 + 32x8 + 9x7 + 15x6 + 34x5 + 13x4 + 8x3 + 7x2 + 3x + 1 | \( -\,3^{17}\cdot 5^{8}\cdot 13^{4}\cdot 17^{4} \) | 18T888 | $[2]$ |
| 18.0.144603922678272000000000.1 | x18 - 3x16 - 6x14 + 33x10 + 273x8 - 19x6 + 225x4 + 675x2 + 125 | \( -\,2^{18}\cdot 3^{24}\cdot 5^{9} \) | $S_3 \times C_3$ (as 18T3) | $[2]$ |
| 18.0.144884079282928466796875.1 | x18 - 5x17 + 6x16 - x15 + 25x14 - 75x13 + 50x12 - 15x11 + 155x10 - 220x9 + 111x8 - 60x7 + 146x6 - 56x5 + 50x4 - 51x3 + 40x2 - 11x + 1 | \( -\,5^{15}\cdot 7^{15} \) | $S_3 \times C_6$ (as 18T6) | $[2]$ |
| 18.0.145340952056670741069824.1 | x18 + 2x16 - 4x14 + x12 + 24x10 + 100x8 - 13x6 + 50x4 + 76x2 + 59 | \( -\,2^{24}\cdot 59^{9} \) | $C_2^2:D_9$ (as 18T39) | $[2]$ |
| 18.0.151749870875069854858407.1 | x18 - 3x17 - 3x16 + 20x15 + 9x14 - 60x13 - 63x12 + 60x11 + 345x10 - 40x9 - 237x8 - 489x7 + 136x6 + 129x5 + 63x4 + 102x3 + 168x2 + 87 | \( -\,3^{21}\cdot 29^{9} \) | $D_9$ (as 18T5) | $[2]$ |
| 18.0.173153579917474218640896.1 | x18 + 5x16 + 7x14 - 4x13 - 5x12 - 27x11 - 19x10 - 22x9 + 44x8 + 92x7 + 212x6 + 351x5 + 481x4 + 385x3 + 168x2 + 23x + 1 | \( -\,2^{9}\cdot 3^{9}\cdot 107^{8} \) | $C_2\times S_3\times S_4$ (as 18T111) | $[2]$ |
| 18.0.191102976000000000000000.1 | x18 - 4x17 + 14x15 - 24x13 - 19x12 + 20x11 + 44x10 + 20x9 - 70x8 - 20x7 + 155x6 - 100x5 + 20x4 + 14x3 - 6x2 + 1 | \( -\,2^{33}\cdot 3^{6}\cdot 5^{15} \) | $C_2\times S_3^2$ (as 18T29) | $[2]$ |
| 18.0.221502229807900608000000.1 | x18 - 4x17 + 12x16 - 26x15 + 60x14 - 92x13 + 147x12 - 192x11 + 244x10 - 236x9 + 244x8 - 192x7 + 147x6 - 92x5 + 60x4 - 26x3 + 12x2 - 4x + 1 | \( -\,2^{12}\cdot 3^{6}\cdot 5^{6}\cdot 7^{15} \) | $C_2\times S_3^2$ (as 18T29) | $[3]$ |
| 18.0.230545359816190649856000.1 | x18 - 9x15 + 36x13 + 45x12 - 234x10 - 225x9 + 252x8 + 630x7 + 498x6 - 756x5 - 1224x4 + 252x3 + 792x2 + 216x + 24 | \( -\,2^{12}\cdot 3^{37}\cdot 5^{3} \) | $C_2\times C_3:S_4$ (as 18T66) | $[2]$ |
| 18.2.254331344722610381338249.1 | x18 - 4x17 + 5x16 + 3x15 - 9x14 + 22x13 - 62x12 - 28x11 + 432x10 - 597x9 - 260x8 + 1372x7 - 1186x6 - 537x5 + 1524x4 - 829x3 - 326x2 + 565x - 211 | \( 23^{8}\cdot 59^{3}\cdot 251^{3} \) | 18T779 | $[2]$ (GRH) |
| 18.0.259979518176473365480584.1 | x18 - 9x15 + 9x14 + 54x12 - 135x11 + 81x10 - 6x9 + 243x8 - 729x7 + 999x6 - 756x5 + 243x4 + 81x3 - 81x2 + 9 | \( -\,2^{3}\cdot 3^{45}\cdot 11 \) | 18T658 | $[2]$ |
| 18.0.263584455435142225920000.1 | x18 + 2x16 - 12x14 - 36x12 + 5x10 + 130x8 + 223x6 + 201x4 + 99x2 + 27 | \( -\,2^{16}\cdot 3^{9}\cdot 5^{4}\cdot 83^{6} \) | 18T310 | $[2]$ |
In order to download results, determine the number of results.