Learn more about

Further refine search

Results (displaying matches 1-50 of at least 1000) Next

Label Polynomial Discriminant Galois group Class group
18.0.36374607805480156224815104.1 x18 + 18x16 + 125x14 + 434x12 + 818x10 + 861x8 + 509x6 + 162x4 + 24x2 + 1 \( -\,2^{18}\cdot 11779563529^{2} \) 18T913 $[15]$
18.0.63744201554816021271484375.1 x18 - 9x17 + 66x16 - 318x15 + 1216x14 - 3630x13 + 8805x12 - 17428x11 + 28338x10 - 37881x9 + 41417x8 - 36489x7 + 25499x6 - 13718x5 + 5500x4 - 1784x3 + 688x2 - 288x + 64 \( -\,5^{9}\cdot 7^{12}\cdot 11^{9} \) $S_3 \times C_3$ (as 18T3) $[12]$
18.0.74037208411275264000000000.1 x18 + 18x16 - 24x15 + 147x14 - 342x13 + 996x12 - 2514x11 + 5586x10 - 11958x9 + 22581x8 - 40962x7 + 66838x6 - 97902x5 + 124314x4 - 128200x3 + 101529x2 - 54078x + 15931 \( -\,2^{27}\cdot 3^{24}\cdot 5^{9} \) $S_3 \times C_6$ (as 18T6) $[14]$ (GRH)
18.0.75613185918270483380568064.1 x18 + 17x16 + 120x14 + 455x12 + 1001x10 + 1287x8 + 924x6 + 330x4 + 45x2 + 1 \( -\,2^{18}\cdot 19^{16} \) $C_{18}$ (as 18T1) $[19]$
18.0.104192253035948620552339456.1 x18 + 17x16 + 114x14 + 389x12 + 728x10 + 758x8 + 433x6 + 131x4 + 19x2 + 1 \( -\,2^{18}\cdot 7^{12}\cdot 169457^{2} \) 18T768 $[16]$ (GRH)
18.0.110609092182866440454328583.1 x18 - x17 + 5x16 - 10x15 + 31x14 - 76x13 + 210x12 + 366x11 + 550x10 + 704x9 + 1130x8 + 1136x7 + 2680x6 + 734x5 + 201x4 + 55x3 + 15x2 + 4x + 1 \( -\,7^{15}\cdot 13^{12} \) $C_6 \times C_3$ (as 18T2) $[13]$
18.0.134467867946269093836238848.1 x18 - 35x12 + 907x6 + 27 \( -\,2^{12}\cdot 3^{21}\cdot 11^{12} \) $C_3^2 : C_2$ (as 18T4) $[2, 6]$
18.0.161536237646646866899894272.1 x18 + 12x16 + 54x14 + 173x12 + 681x10 + 2232x8 + 4894x6 + 7221x4 + 5484x2 + 1297 \( -\,2^{18}\cdot 3^{24}\cdot 1297^{3} \) 18T472 $[20]$
18.0.208728361158759000000000000.1 x18 - 6x17 + 6x16 + 21x15 - 18x14 - 84x13 + 41x12 + 270x11 - 184x10 - 305x9 + 96x8 + 240x7 + 316x6 - 396x5 + 32x4 - 116x3 + 136x2 + 16x + 16 \( -\,2^{12}\cdot 3^{9}\cdot 5^{12}\cdot 13^{9} \) $S_3^2$ (as 18T9) $[12]$ (GRH)
18.0.220341376966031977018118679.1 x18 - 4x17 + 7x16 - 13x15 + 73x14 - 196x13 + 456x12 - 1442x11 + 5024x10 - 11878x9 + 20482x8 - 24026x7 + 20896x6 - 9772x5 + 3997x4 + 1484x3 + 1519x2 + 343x + 49 \( -\,3^{9}\cdot 7^{15}\cdot 11^{9} \) $S_3 \times C_3$ (as 18T3) $[2, 6]$
18.0.225016488014952555075055616.2 x18 - x17 + 13x16 + 14x15 + 56x14 + 169x13 + 406x12 + 308x11 + 2504x10 - 1429x9 + 9291x8 - 10863x7 + 21735x6 - 23733x5 + 43497x4 - 20412x3 + 48114x2 - 13122x + 19683 \( -\,2^{12}\cdot 11^{9}\cdot 13^{12} \) $S_3 \times C_6$ (as 18T6) $[14]$ (GRH)
18.0.232218265089212416000000000.1 x18 + 14x16 + 77x14 + 310x12 + 994x10 + 1876x8 + 3289x6 + 3290x4 + 1400x2 + 1000 \( -\,2^{33}\cdot 5^{9}\cdot 7^{12} \) $S_3 \times C_6$ (as 18T6) $[3, 6]$ (GRH)
18.0.242190571378050467501912064.1 x18 - 2x17 - 4x16 + 22x15 + 44x14 - 74x13 + 223x12 + 312x11 - 1620x10 - 576x9 + 5508x8 - 2916x7 - 3861x6 + 7614x5 + 2916x4 - 486x3 + 2916x2 + 1458x + 729 \( -\,2^{12}\cdot 3^{9}\cdot 113^{9} \) $C_3^2 : C_2$ (as 18T4) $[3, 6]$
18.0.258151783382020583032356864.7 x18 + 18x16 + 135x14 + 546x12 + 1287x10 + 1782x8 + 1386x6 + 540x4 + 81x2 + 1 \( -\,2^{18}\cdot 3^{44} \) $C_{18}$ (as 18T1) $[19]$
18.0.267565734285752664500207616.1 x18 - 6x17 + 13x16 + 10x15 - 136x14 + 370x13 - 397x12 - 442x11 + 2502x10 - 4778x9 + 5325x8 - 3574x7 + 2237x6 - 5348x5 + 11786x4 - 13880x3 + 9112x2 - 2592x + 526 \( -\,2^{33}\cdot 3^{8}\cdot 7^{15} \) $C_2\times S_3^2$ (as 18T29) $[12]$ (GRH)
18.0.294294683659613060358918144.1 x18 - 3x17 + 11x16 - 11x15 + 24x14 - 12x13 + 121x12 - 95x11 + 727x10 + 25x9 + 1172x8 + 1386x7 + 3079x6 + 893x5 + 4781x4 + 825x3 + 1247x2 - 1319x + 982 \( -\,2^{12}\cdot 3^{9}\cdot 7^{9}\cdot 67^{6} \) 18T228 $[2, 8]$
18.0.303843936636352000000000000.1 x18 - 2x17 + 8x16 - x15 + 58x14 - 55x13 + 123x12 + 9x11 + 70x10 - 12x9 + 49x8 + 204x7 + 37x6 + 175x5 + 118x4 + 90x3 + 264x2 + 208x + 64 \( -\,2^{18}\cdot 5^{12}\cdot 7^{15} \) $C_3\times S_3^2$ (as 18T46) $[18]$ (GRH)
18.0.309733882939010758901760000.1 x18 + 8x16 + 35x14 + 139x12 + 433x10 + 823x8 + 857x6 + 450x4 + 108x2 + 9 \( -\,2^{18}\cdot 3^{8}\cdot 5^{4}\cdot 257^{6} \) 18T487 $[12]$
18.0.316075500780176721688542927.1 x18 - 6x17 + 6x16 + 20x15 - 48x14 - 96x13 + 459x12 + 66x11 - 435x10 + 664x9 + 4833x8 + 900x7 + 287x6 + 3024x5 + 13032x4 + 5976x3 + 12069x2 + 7938x + 20331 \( -\,3^{24}\cdot 47^{9} \) $S_3 \times C_3$ (as 18T3) $[15]$
18.0.352460338371438479971671591.1 x18 + 9x16 - 9x15 + 162x14 - 99x13 + 1473x12 - 1404x11 + 6264x10 - 5939x9 + 12636x8 - 11961x7 + 14742x6 - 10530x5 + 7452x4 - 3267x3 + 1215x2 - 243x + 27 \( -\,3^{44}\cdot 71^{3} \) $C_2\times C_2^2:C_9$ (as 18T26) $[21]$
18.0.411558530965263777632956416.1 x18 - 3x17 - 9x16 + 6x15 + 129x14 - 123x13 - 90x12 - 909x11 + 1545x10 + 446x9 - 519x8 - 1077x7 + 3981x6 - 3468x5 + 2646x4 - 816x3 + 1608x2 + 792x + 484 \( -\,2^{12}\cdot 3^{25}\cdot 17^{9} \) $S_3^2$ (as 18T11) $[3, 6]$ (GRH)
18.0.430285483449173885556359168.1 x18 - 2x17 - 11x16 + 2x15 + 95x14 - 26x13 - 85x12 - 154x11 + 1159x10 - 2970x9 - 4843x8 - 4982x7 + 12797x6 + 18420x5 + 54332x4 + 85532x3 + 82964x2 + 37800x + 46984 \( -\,2^{18}\cdot 7^{12}\cdot 17^{9} \) $S_3 \times C_3$ (as 18T3) $[12]$
18.0.439683473024149336981766144.1 x18 + 26x14 + 52x12 + 169x10 + 7436x8 + 25181x6 + 43940x4 + 43940x2 + 17576 \( -\,2^{33}\cdot 13^{15} \) $S_3 \times C_6$ (as 18T6) $[18]$ (GRH)
18.0.530727912779568801529540608.1 x18 - 2x17 + 10x16 + 10x15 + 7x14 + 97x13 + 127x12 - 201x11 + 915x10 - 653x9 + 656x8 + 76x7 - 34x6 + 161x5 + 28x4 - 8x3 + 27x2 - 5x + 1 \( -\,2^{12}\cdot 3^{9}\cdot 37^{12} \) $S_3 \times C_6$ (as 18T6) $[12]$ (GRH)
18.0.530727912779568801529540608.2 x18 - 3x17 + 5x16 + 6x15 - 12x14 - 28x13 + 63x12 + 17x11 - 17x10 - 126x9 + 130x8 - 112x7 + 216x6 - 144x5 + 200x4 - 112x3 + 112x2 - 32x + 64 \( -\,2^{12}\cdot 3^{9}\cdot 37^{12} \) $S_3^2$ (as 18T11) $[12]$ (GRH)
18.0.535422519938359574117644671.2 x18 - 17x15 + 193x12 - 1057x9 + 3187x6 - 4125x3 + 15625 \( -\,3^{21}\cdot 13^{15} \) $S_3 \times C_6$ (as 18T6) $[12]$ (GRH)
18.0.569862261508654647313096707.1 x18 + 6x16 - 18x15 + 60x14 - 75x13 + 256x12 - 459x11 + 966x10 - 871x9 + 1740x8 - 1116x7 + 2869x6 - 2424x5 + 6450x4 - 2606x3 + 3006x2 - 513x + 361 \( -\,3^{27}\cdot 73^{3}\cdot 577^{3} \) 18T285 $[2, 12]$
18.0.592297667290202112000000000.1 x18 - 6x17 + 18x16 - 36x15 + 57x14 + 54x13 - 262x12 - 408x11 + 4434x10 - 14948x9 + 43596x8 - 97524x7 + 191241x6 - 297918x5 + 389286x4 - 440316x3 + 419904x2 - 314928x + 157464 \( -\,2^{30}\cdot 3^{24}\cdot 5^{9} \) $S_3 \times C_6$ (as 18T6) $[2, 6]$ (GRH)
18.0.615992567705547976896144751.1 x18 + 22x16 - 8x15 + 193x14 - 138x13 + 1085x12 - 921x11 + 4781x10 - 3596x9 + 13950x8 - 12017x7 + 36528x6 - 25667x5 + 61742x4 - 59237x3 + 44674x2 - 56832x + 39944 \( -\,13^{12}\cdot 31^{9} \) $S_3 \times C_3$ (as 18T3) $[2, 6]$ (GRH)
18.0.663767077778191870430588928.1 x18 + 28x16 + 252x14 + 1157x12 + 2772x10 + 3556x8 + 2575x6 + 1092x4 + 252x2 + 27 \( -\,2^{12}\cdot 3^{9}\cdot 7^{12}\cdot 29^{6} \) $S_3^2$ (as 18T11) $[3, 6]$ (GRH)
18.0.737445455454227457309147136.1 x18 + 17x16 + 115x14 + 400x12 + 776x10 + 851x8 + 511x6 + 157x4 + 22x2 + 1 \( -\,2^{30}\cdot 37^{6}\cdot 16361^{2} \) 18T836 $[28]$ (GRH)
18.0.802697202857257993500622848.1 x18 + 28x16 + 336x14 + 2226x12 + 9212x10 + 27440x8 + 65464x6 + 123480x4 + 148176x2 + 74088 \( -\,2^{33}\cdot 3^{9}\cdot 7^{15} \) $S_3 \times C_6$ (as 18T6) $[2, 14]$ (GRH)
18.0.802697202857257993500622848.2 x18 - 8x17 + 50x16 - 214x15 + 777x14 - 2306x13 + 5951x12 - 13076x11 + 25573x10 - 42600x9 + 65630x8 - 85698x7 + 110878x6 - 123990x5 + 146017x4 - 124430x3 + 112877x2 - 54474x + 17851 \( -\,2^{33}\cdot 3^{9}\cdot 7^{15} \) $S_3 \times C_6$ (as 18T6) $[2, 14]$ (GRH)
18.0.823903027170640554647911051.1 x18 + 17x16 - 7x15 + 174x14 - 142x13 + 1276x12 - 1068x11 + 6618x10 - 6859x9 + 25026x8 - 25559x7 + 58530x6 - 44688x5 + 47915x4 - 20759x3 + 14724x2 - 2412x + 216 \( -\,7^{12}\cdot 53^{6}\cdot 139^{3} \) $C_6\times S_4$ (as 18T61) $[2, 2, 10]$ (GRH)
18.0.977480813971145474830595007.3 x18 - 3x17 + 36x15 - 72x14 - 108x13 + 498x12 - 390x11 - 1764x10 + 1160x9 + 4896x8 + 828x7 - 3579x6 - 4479x5 + 756x4 + 2892x3 + 1056x2 - 1728x + 512 \( -\,3^{30}\cdot 7^{15} \) $S_3 \times C_6$ (as 18T6) $[21]$ (GRH)
18.0.1024770265180753855691096064.1 x18 + 30x16 + 333x14 + 1712x12 + 4164x10 + 4500x8 + 2316x6 + 561x4 + 54x2 + 1 \( -\,2^{18}\cdot 3^{24}\cdot 7^{12} \) $C_6 \times C_3$ (as 18T2) $[2, 14]$
18.0.1056431860294718188453625856.1 x18 - 4x17 + 6x16 + 2x15 + 3x14 - 96x13 + 400x12 - 598x11 + 361x10 + 1116x9 - 1796x8 + 1670x7 + 1665x6 - 1256x5 + 1240x4 + 1374x3 + 1474x2 - 2208x + 534 \( -\,2^{20}\cdot 3^{9}\cdot 13^{15} \) $C_2\times S_3^2$ (as 18T29) $[12]$ (GRH)
18.0.1258021719181200122144096256.2 x18 + x16 - 36x14 + 81x12 + 37x10 - 176x8 - 84x6 + 192x4 + 208x2 + 64 \( -\,2^{18}\cdot 3^{6}\cdot 37^{12} \) $S_3^2$ (as 18T11) $[2, 6]$ (GRH)
18.0.1272623169716040941204406272.1 x18 + 22x16 + 195x14 + 905x12 + 2407x10 + 3777x8 + 3444x6 + 1699x4 + 374x2 + 17 \( -\,2^{18}\cdot 17^{3}\cdot 994046201^{2} \) 18T968 $[32]$
18.0.1300691549639793389396484375.1 x18 - 9x16 - 24x15 + 57x14 + 171x13 + 78x12 - 1398x11 - 354x10 + 2370x9 + 7326x8 - 11433x7 + 823x6 + 783x5 + 55563x4 + 3137x3 + 48636x2 - 42972x + 9784 \( -\,3^{24}\cdot 5^{9}\cdot 11^{9} \) $S_3 \times C_6$ (as 18T6) $[28]$ (GRH)
18.0.1396922880341839978152758551.1 x18 - 6x17 + 33x16 - 132x15 + 398x14 - 878x13 + 1591x12 - 2720x11 + 5300x10 - 9712x9 + 11716x8 - 6585x7 + 6401x6 - 25670x5 + 32584x4 + 6876x3 - 33816x2 - 3691x + 27971 \( -\,7^{12}\cdot 13^{5}\cdot 43^{7} \) 18T188 $[2, 2, 6]$
18.0.1399141503834185765244506391.1 x18 - 3x17 + 15x16 - 53x15 + 207x14 - 648x13 + 1867x12 - 5094x11 + 12642x10 - 27983x9 + 54783x8 - 96642x7 + 152588x6 - 201378x5 + 203559x4 - 147022x3 + 71619x2 - 21321x + 3079 \( -\,3^{24}\cdot 7^{12}\cdot 71^{3} \) $C_6\times A_4$ (as 18T25) $[2, 10]$
18.0.1399141503834185765244506391.2 x18 - 3x17 + 27x16 - 52x15 + 249x14 - 378x13 + 1144x12 - 1320x11 + 2610x10 - 2630x9 + 3594x8 - 2052x7 + 2454x6 - 1296x5 + 1647x4 - 963x3 + 567x2 - 162x + 27 \( -\,3^{24}\cdot 7^{12}\cdot 71^{3} \) $C_6\times A_4$ (as 18T25) $[2, 14]$
18.0.1511989339484099453953241088.1 x18 + 6x16 - 12x14 + 28x12 + 345x10 + 138x8 + 14812x6 + 39675x4 + 36501x2 + 12167 \( -\,2^{12}\cdot 3^{18}\cdot 23^{11} \) $S_3\times S_4$ (as 18T65) $[14]$ (GRH)
18.0.1529686226742116542605950976.1 x18 - 12x16 - 10x15 + 108x14 + 42x13 - 447x12 + 222x11 + 2181x10 - 4754x9 - 5631x8 + 19452x7 + 1661x6 - 32016x5 + 66060x4 - 105666x3 + 112833x2 - 91314x + 53433 \( -\,2^{27}\cdot 3^{24}\cdot 7^{9} \) $S_3 \times C_3$ (as 18T3) $[12]$
18.0.1605394405714515987001245696.1 x18 - 6x17 + 31x16 - 126x15 + 449x14 - 1344x13 + 3523x12 - 8124x11 + 16814x10 - 30804x9 + 50122x8 - 71112x7 + 87448x6 - 89688x5 + 73686x4 - 45720x3 + 20178x2 - 5832x + 918 \( -\,2^{34}\cdot 3^{9}\cdot 7^{15} \) $C_2\times S_3^2$ (as 18T29) $[2, 6]$ (GRH)
18.0.1612515237057830683893428407.1 x18 - 9x17 + 16x16 + 76x15 - 304x14 + 84x13 + 1122x12 - 1714x11 - 220x10 + 2464x9 - 1596x8 - 1124x7 + 1128x6 + 1970x5 - 851x4 - 3175x3 + 5544x2 - 3412x + 968 \( -\,7^{9}\cdot 43^{12} \) $S_3 \times C_3$ (as 18T3) $[19]$
18.0.1732489493949409312748077056.1 x18 + 50x12 - 47x6 + 64 \( -\,2^{30}\cdot 3^{6}\cdot 19^{12} \) $C_2\times S_3^2$ (as 18T29) $[2, 6]$ (GRH)
18.0.1992907237572181137360420864.1 x18 - 3x16 - 6x14 + 30x12 + 126x10 + 378x8 + 594x6 + 702x4 + 405x2 + 81 \( -\,2^{32}\cdot 3^{16}\cdot 47^{6} \) 18T396 $[2, 6]$
18.0.2083629921519675807054655488.1 x18 - 3x17 + 21x16 - 54x15 + 195x14 - 471x13 + 1077x12 - 2142x11 + 3306x10 - 5050x9 + 6096x8 - 8646x7 + 9585x6 - 9465x5 + 9138x4 - 1689x3 + 19827x2 + 11898x + 10104 \( -\,2^{12}\cdot 3^{24}\cdot 23^{9} \) $C_3:S_3:S_4$ (as 18T155) $[14]$
Next

In order to download results, determine the number of results.