Learn more about

Further refine search

Results (displaying matches 1-50 of at least 1000) Next

Label Polynomial Discriminant Galois group Class group
18.0.10703880581610941769412109375.1 x18 - x17 + 20x16 - 20x15 + 172x14 - 172x13 + 837x12 - 837x11 + 2566x10 - 2566x9 + 5283x8 - 5283x7 + 7791x6 - 7791x5 + 9045x4 - 9045x3 + 9330x2 - 9330x + 9349 \( -\,5^{9}\cdot 19^{17} \) $C_{18}$ (as 18T1) $[152]$ (GRH)
18.0.11639651445632252525480175367.1 x18 - x17 + 26x16 - 19x15 + 319x14 - 179x13 + 2258x12 - 914x11 + 9881x10 - 2825x9 + 26418x8 - 4536x7 + 41176x6 - 4496x5 + 32480x4 + 10240x2 - 1280x + 512 \( -\,7^{9}\cdot 19^{16} \) $C_{18}$ (as 18T1) $[2, 74]$ (GRH)
18.0.12488057521927227046014543503.1 x18 - 8x17 + 44x16 - 148x15 + 337x14 - 355x13 - 409x12 + 2535x11 - 3290x10 - 6263x9 + 43736x8 - 119075x7 + 221321x6 - 296751x5 + 303777x4 - 226521x3 + 141287x2 - 71712x + 44507 \( -\,7^{15}\cdot 138041^{3} \) 18T285 $[2, 56]$ (GRH)
18.0.38713951190154487490850848768.1 x18 + 34x16 + 480x14 + 3640x12 + 16016x10 + 41184x8 + 59136x6 + 42240x4 + 11520x2 + 512 \( -\,2^{27}\cdot 19^{16} \) $C_{18}$ (as 18T1) $[171]$ (GRH)
18.0.39739057971752889532465351767.1 x18 + 27x16 + 351x14 + 2646x12 + 12465x10 - 5x9 + 35964x8 + 468x7 + 61488x6 + 4752x5 + 51840x4 + 9600x3 + 20736x2 + 2304x + 512 \( -\,3^{44}\cdot 7^{9} \) $C_{18}$ (as 18T1) $[163]$ (GRH)
18.0.41301528122037146650360676352.1 x18 + 12x16 - 40x15 + 96x14 - 444x13 + 1674x12 - 2472x11 + 16878x10 - 19734x9 + 64794x8 - 118380x7 + 147569x6 - 491256x5 + 1646274x4 - 2357414x3 + 7131054x2 - 6384660x + 1632457 \( -\,2^{27}\cdot 3^{27}\cdot 7^{9} \) $S_3 \times C_6$ (as 18T6) $[2, 2, 26]$ (GRH)
18.0.47844481638506531328000000000.1 x18 - 4x17 + 18x16 - 92x15 + 137x14 - 262x13 + 928x12 + 1544x11 - 1155x10 - 2378x9 - 11207x8 - 11994x7 + 36962x6 - 121254x5 + 174674x4 - 268108x3 + 686430x2 - 163192x + 580021 \( -\,2^{18}\cdot 3^{9}\cdot 5^{9}\cdot 7^{15} \) $S_3 \times C_6$ (as 18T6) $[2, 2, 26]$ (GRH)
18.0.54381578892591924651626528931.1 x18 - 8x17 + 27x16 - 81x15 + 291x14 - 804x13 + 1229x12 + 793x11 + 3756x10 + 1662x9 + 4817x8 + 2413x7 + 2650x6 - 147x5 + 464x4 - 14x3 + 28x2 - x + 1 \( -\,3^{9}\cdot 13^{12}\cdot 17^{9} \) $S_3 \times C_3$ (as 18T3) $[3, 3, 18]$ (GRH)
18.0.62175293115232802505366962176.1 x18 + 30x16 + 349x14 + 2085x12 + 7021x10 + 13685x8 + 15239x6 + 9016x4 + 2254x2 + 49 \( -\,2^{18}\cdot 7^{14}\cdot 769^{4} \) 18T552 $[6, 24]$ (GRH)
18.0.75791969904071417486171701248.1 x18 + 30x16 + 357x14 + 2216x12 + 7917x10 + 16836x8 + 21078x6 + 14613x4 + 4866x2 + 577 \( -\,2^{18}\cdot 3^{24}\cdot 73^{2}\cdot 577^{3} \) 18T472 $[3, 84]$ (GRH)
18.0.75791969904071417486171701248.2 x18 + 33x16 + 432x14 + 2878x12 + 10569x10 + 22212x8 + 26600x6 + 17148x4 + 5193x2 + 577 \( -\,2^{18}\cdot 3^{24}\cdot 73^{2}\cdot 577^{3} \) 18T879 $[240]$ (GRH)
18.0.84535014172552012147112280064.1 x18 + 40x16 + 606x14 + 4498x12 + 17745x10 + 37370x8 + 40081x6 + 20600x4 + 4112x2 + 64 \( -\,2^{18}\cdot 7^{12}\cdot 13^{12} \) $C_6 \times C_3$ (as 18T2) $[3, 6, 6]$ (GRH)
18.0.92384419220890933620945190912.1 x18 + 27x16 + 289x14 + 1645x12 + 5523x10 + 11298x8 + 13839x6 + 9334x4 + 2678x2 + 13 \( -\,2^{18}\cdot 7^{16}\cdot 13^{9} \) $C_2\times C_3^2.A_4$ (as 18T92) $[3, 42]$ (GRH)
18.0.92384419220890933620945190912.2 x18 + 26x16 + 274x14 + 1498x12 + 4522x10 + 7469x8 + 6433x6 + 2652x4 + 429x2 + 13 \( -\,2^{18}\cdot 7^{16}\cdot 13^{9} \) $C_2\times C_3^2.A_4$ (as 18T92) $[114]$ (GRH)
18.0.94830820568684146627640045568.4 x18 + 6x16 + 24x14 - 156x13 + 181x12 - 168x11 - 12x10 + 864x9 + 1956x8 - 1968x7 - 773x6 + 384x5 + 810x4 + 14112x3 + 32844x2 + 27720x + 9075 \( -\,2^{12}\cdot 3^{21}\cdot 19^{12} \) $C_3^2 : C_2$ (as 18T4) $[6, 18]$ (GRH)
18.0.102359054154765255044328108199.1 x18 - 9x17 + 62x16 - 292x15 + 1146x14 - 3626x13 + 9891x12 - 22842x11 + 46111x10 - 80086x9 + 121818x8 - 159244x7 + 180716x6 - 173115x5 + 140578x4 - 91800x3 + 48036x2 - 17345x + 4181 \( -\,19^{17}\cdot 37\cdot 151\cdot 3343 \) 18T460 $[2, 2, 76]$ (GRH)
18.0.103514451522112291747997679616.1 x18 + 25x16 + 263x14 + 1528x12 + 5404x10 + 12064x8 + 16994x6 + 14559x4 + 6882x2 + 1369 \( -\,2^{18}\cdot 19^{16}\cdot 37^{2} \) 18T264 $[2, 162]$ (GRH)
18.0.132173713091594538512566714368.2 x18 + 36x16 + 540x14 + 4368x12 + 20592x10 + 57024x8 + 88704x6 + 69120x4 + 20736x2 + 512 \( -\,2^{27}\cdot 3^{44} \) $C_{18}$ (as 18T1) $[333]$ (GRH)
18.0.141204899984457152700528984064.1 x18 + 24x16 + 220x14 + 1010x12 + 2543x10 + 3581x8 + 2690x6 + 905x4 + 66x2 + 1 \( -\,2^{18}\cdot 257^{6}\cdot 43237^{2} \) 18T556 $[2, 68]$ (GRH)
18.0.143831668082131915073650688000.1 x18 + 20x16 + 167x14 + 757x12 + 2025x10 + 3248x8 + 3022x6 + 1477x4 + 293x2 + 5 \( -\,2^{30}\cdot 5^{3}\cdot 37^{6}\cdot 107^{2}\cdot 191^{2} \) 18T556 $[2, 60]$ (GRH)
18.0.147354494188655680463387247047.1 x18 + 28x16 - 31x15 + 343x14 - 560x13 + 2535x12 - 4606x11 + 14791x10 - 17924x9 + 29428x8 + 15897x7 - 50004x6 + 185423x5 - 114961x4 + 122123x3 + 237580x2 - 217679x + 451879 \( -\,7^{12}\cdot 97^{3}\cdot 22679^{3} \) 18T472 $[104]$ (GRH)
18.0.164037019762900412649715544064.1 x18 - x17 + 13x16 - 2x15 + 115x14 - 91x13 + 1177x12 - 1431x11 + 6780x10 - 7238x9 + 35125x8 - 55927x7 + 162275x6 - 210997x5 + 444163x4 - 469025x3 + 586289x2 - 145088x + 90787 \( -\,2^{12}\cdot 3^{6}\cdot 11^{9}\cdot 13^{12} \) $S_3 \times C_6$ (as 18T6) $[126]$ (GRH)
18.0.168399912313071389456086597632.1 x18 - 2x17 + 47x16 - 74x15 + 907x14 - 1134x13 + 9377x12 - 9216x11 + 56719x10 - 43522x9 + 205793x8 - 125158x7 + 442963x6 - 223626x5 + 549366x4 - 241380x3 + 372456x2 - 127008x + 74088 \( -\,2^{18}\cdot 3^{9}\cdot 7^{12}\cdot 11^{9} \) $S_3 \times C_3$ (as 18T3) $[3, 6, 18]$ (GRH)
18.0.188521017135728366078671192064.1 x18 - 6x17 + 31x16 - 124x15 + 403x14 - 1144x13 + 2830x12 - 6420x11 + 13956x10 - 27780x9 + 51861x8 - 91584x7 + 173635x6 - 319924x5 + 597495x4 - 843778x3 + 865576x2 - 666536x + 330469 \( -\,2^{24}\cdot 37^{6}\cdot 16361^{3} \) 18T394 $[4, 68]$ (GRH)
18.0.202215111299126210886918044067.1 x18 - 6x17 + 6x16 + 6x15 + 267x14 - 1599x13 + 3156x12 - 267x11 - 4575x10 - 6847x9 + 34635x8 + 2436x7 - 52743x6 - 51519x5 + 250608x4 + 227274x3 - 605661x2 - 261210x + 836587 \( -\,3^{31}\cdot 41^{9} \) $S_3 \times C_3$ (as 18T3) $[2, 2, 38]$ (GRH)
18.0.206148603259625688967552734375.1 x18 - 6x17 + 21x16 - 38x15 + 72x14 - 72x13 + 82x12 + 540x11 - 123x10 - 880x9 + 17883x8 - 34212x7 + 79951x6 - 92796x5 + 178851x4 - 124326x3 + 112827x2 - 54930x + 114211 \( -\,3^{27}\cdot 5^{9}\cdot 7^{12} \) $C_6 \times C_3$ (as 18T2) $[2, 2, 74]$ (GRH)
18.0.216895506996594951140594638751.1 x18 - 9x17 + 60x16 - 276x15 + 1040x14 - 3164x13 + 8190x12 - 17914x11 + 33819x10 - 54695x9 + 76338x8 - 90906x7 + 92078x6 - 77770x5 + 53800x4 - 29270x3 + 11843x2 - 3165x + 433 \( -\,7^{16}\cdot 13^{8}\cdot 8000831 \) 18T586 $[165]$ (GRH)
18.0.220306167525977029404855894016.1 x18 + 28x16 - 6x15 + 294x14 - 98x13 + 2049x12 - 490x11 + 9401x10 + 62x9 + 25921x8 + 5572x7 + 50645x6 + 13328x5 + 75068x4 + 19698x3 + 60025x2 + 17150x + 42875 \( -\,2^{27}\cdot 7^{12}\cdot 17^{9} \) $S_3 \times C_3$ (as 18T3) $[2, 2, 28]$ (GRH)
18.0.242839247007536485508643885603.1 x18 - x17 + 17x16 - 6x15 + 201x14 - 76x13 + 999x12 - 218x11 + 3519x10 - 623x9 + 5540x8 + 1505x7 + 5069x6 - 129x5 + 528x4 - 97x3 + 56x2 - 7x + 1 \( -\,3^{9}\cdot 37^{16} \) $C_{18}$ (as 18T1) $[171]$ (GRH)
18.0.314658276613728674017349730304.1 x18 + 32x16 + 392x14 + 2337x12 + 7216x10 + 11256x8 + 7946x6 + 2128x4 + 120x2 + 1 \( -\,2^{18}\cdot 13^{12}\cdot 61^{6} \) $S_3 \times C_6$ (as 18T6) $[3, 3, 12]$ (GRH)
18.0.333998778547472552821465808896.1 x18 + 24x16 + 228x14 + 1129x12 + 3177x10 + 5133x8 + 4523x6 + 1874x4 + 231x2 + 1 \( -\,2^{30}\cdot 19^{6}\cdot 137^{6} \) 18T370 $[2, 64]$ (GRH)
18.0.396521139274783615537700143104.1 x18 + 36x16 + 540x14 + 4368x12 + 20592x10 + 57024x8 + 88704x6 + 69120x4 + 20736x2 + 1536 \( -\,2^{27}\cdot 3^{45} \) $C_{18}$ (as 18T1) $[542]$ (GRH)
18.0.442064923298304690829165330432.1 x18 - 6x17 + 29x16 - 102x15 + 336x14 - 890x13 + 2170x12 - 4566x11 + 9356x10 - 15604x9 + 22168x8 - 24046x7 + 21992x6 - 15918x5 + 17462x4 - 15366x3 + 13571x2 - 3898x + 6053 \( -\,2^{26}\cdot 37^{6}\cdot 13693^{3} \) 18T394 $[2, 100]$ (GRH)
18.0.450283905890997363000000000000.1 x18 - 171x12 + 9747x6 + 27 \( -\,2^{12}\cdot 3^{37}\cdot 5^{12} \) $C_3^2 : C_2$ (as 18T4) $[3, 6, 6]$ (GRH)
18.0.450283905890997363000000000000.2 x18 - 9x17 + 45x16 - 126x15 + 189x14 - 27x13 - 216x12 - 729x11 + 3807x10 - 5414x9 - 423x8 + 17991x7 - 36621x6 + 11718x5 + 99414x4 - 188676x3 + 121500x2 + 11016x + 1156 \( -\,2^{12}\cdot 3^{37}\cdot 5^{12} \) $C_3^2 : C_2$ (as 18T4) $[3, 6, 6]$ (GRH)
18.0.453054841581020940100929875968.2 x18 - x17 + 5x16 + 19x15 + 8x14 + 68x13 + 90x12 - 118x11 + 653x10 + 1339x9 - 771x8 + 51x7 + 4810x6 + 2562x5 + 2212x4 + 7728x3 + 4256x2 + 2688x + 7168 \( -\,2^{12}\cdot 7^{15}\cdot 13^{12} \) $S_3 \times C_6$ (as 18T6) $[156]$ (GRH)
18.0.519235183203048555634413069867.2 x18 - 6x17 + 12x16 - 28x15 + 171x14 - 192x13 - 252x12 + 624x11 + 537x10 + 4550x9 + 11598x8 + 23070x7 + 61893x6 + 117033x5 + 211056x4 + 282511x3 + 269637x2 + 183555x + 59273 \( -\,3^{24}\cdot 107^{9} \) $S_3 \times C_3$ (as 18T3) $[2, 2, 2, 18]$ (GRH)
18.0.524682375772545974113841184768.4 x18 - 12x16 - 8x15 + 117x14 + 96x13 + 246x12 + 438x11 + 2376x10 + 3532x9 + 21948x8 + 13782x7 + 114732x6 + 44268x5 + 331017x4 + 87920x3 + 531078x2 + 90444x + 386513 \( -\,2^{27}\cdot 3^{24}\cdot 7^{12} \) $C_6 \times C_3$ (as 18T2) $[18, 18]$ (GRH)
18.0.537713931394153787585294237696.1 x18 + 26x16 + 277x14 + 1739x12 + 8504x10 + 34994x8 + 100505x6 + 170701x4 + 150743x2 + 52919 \( -\,2^{18}\cdot 7^{12}\cdot 52919^{3} \) 18T401 $[128]$ (GRH)
18.0.584519553822414728713847701504.1 x18 + 22x16 + 204x14 + 1040x12 + 3188x10 + 6032x8 + 6943x6 + 4582x4 + 1508x2 + 169 \( -\,2^{18}\cdot 7^{12}\cdot 13^{2}\cdot 41^{2}\cdot 23813^{2} \) 18T879 $[2, 2, 66]$ (GRH)
18.0.602991213815902363206590020563.2 x18 + 26x16 - 28x15 + 495x14 - 518x13 + 4312x12 - 5250x11 + 27163x10 - 25326x9 + 69607x8 - 33026x7 + 104749x6 - 50344x5 + 66332x4 - 14224x3 + 19600x2 - 4704x + 3136 \( -\,3^{9}\cdot 7^{12}\cdot 19^{12} \) $C_6 \times C_3$ (as 18T2) $[6, 18]$ (GRH)
18.0.677479543132411644552981573632.1 x18 - 10x16 - 5x15 + 84x14 - 15x13 - 186x12 - 92x11 + 1232x10 - 405x9 + 2987x8 - 2817x7 + 13566x6 + 895x5 + 29602x4 - 626x3 + 31305x2 - 11895x + 61027 \( -\,2^{12}\cdot 7^{12}\cdot 37^{6}\cdot 167^{3} \) $C_2\times S_3\times A_4$ (as 18T60) $[216]$ (GRH)
18.0.685529707511808000000000000000.1 x18 + 30x16 + 360x14 + 2370x12 + 6300x10 - 27000x8 - 168300x6 + 81000x4 + 5886000x2 + 18252000 \( -\,2^{31}\cdot 3^{21}\cdot 5^{15} \) $C_2\times C_3^2:S_3$ (as 18T52) $[2, 6, 18]$ (GRH)
18.0.691976677792049302709773533184.1 x18 + 29x16 + 338x14 + 2070x12 + 7345x10 + 15603x8 + 19532x6 + 13258x4 + 3756x2 + 1 \( -\,2^{18}\cdot 1129^{8} \) $D_{18}$ (as 18T13) $[178]$ (GRH)
18.0.691976677792049302709773533184.2 x18 + 19x16 + 144x14 + 566x12 + 1256x10 + 1607x8 + 1160x6 + 438x4 + 69x2 + 1 \( -\,2^{18}\cdot 1129^{8} \) $C_2\times C_2^2:D_9$ (as 18T67) $[200]$ (GRH)
18.0.725588521883853198293196716319.1 x18 - 6x17 + 3x16 + 40x15 - 3x14 - 438x13 + 1141x12 + 126x11 + 3081x10 - 444x9 + 14067x8 + 28818x7 + 68469x6 + 96822x5 + 113724x4 + 94392x3 + 60912x2 + 23328x + 5184 \( -\,3^{27}\cdot 7^{9}\cdot 11^{9} \) $S_3 \times C_3$ (as 18T3) $[3, 6, 18]$ (GRH)
18.0.726566512595229689293941092352.2 x18 - x17 + 14x16 + 17x15 + 123x14 + 149x13 + 565x12 + 814x11 + 1779x10 + 1863x9 + 2434x8 + 1956x7 + 2058x6 + 1369x5 + 766x4 + 264x3 + 69x2 + 10x + 1 \( -\,2^{12}\cdot 3^{9}\cdot 37^{14} \) $S_3 \times C_6$ (as 18T6) $[3, 6, 6]$ (GRH)
18.0.833176180046218838523368177664.3 x18 - 18x15 + 121x12 - 414x9 + 2587x6 - 1080x3 + 729 \( -\,2^{24}\cdot 3^{21}\cdot 7^{15} \) $C_2\times C_3:S_3$ (as 18T12) $[3, 6, 6]$ (GRH)
18.0.975771436849265818910759059456.1 x18 + 34x16 + 442x14 + 2878x12 + 10264x10 + 20724x8 + 24144x6 + 15974x4 + 5529x2 + 769 \( -\,2^{18}\cdot 7^{12}\cdot 769^{5} \) 18T696 $[792]$ (GRH)
18.0.1115141259295002959559738261504.1 x18 - 6x17 + 39x16 - 156x15 + 741x14 - 2964x13 + 12243x12 - 42762x11 + 134040x10 - 356156x9 + 818277x8 - 1613178x7 + 2750907x6 - 3956256x5 + 4799817x4 - 4605120x3 + 3278853x2 - 1452222x + 298719 \( -\,2^{27}\cdot 3^{30}\cdot 7^{9} \) $S_3 \times C_6$ (as 18T6) $[2, 6, 12]$ (GRH)
Next

In order to download results, determine the number of results.