Learn more about

Further refine search

Results (displaying matches 1-50 of at least 1000) Next

Label Polynomial Discriminant Galois group Class group
18.0.680129765110548404696137774571.1 x18 - 7x17 + 31x16 - 98x15 + 331x14 - 957x13 + 2693x12 - 6227x11 + 15226x10 - 30674x9 + 66392x8 - 111391x7 + 216508x6 - 293668x5 + 517517x4 - 511304x3 + 833369x2 - 453934x + 713641 \( -\,11^{9}\cdot 19^{16} \) $C_{18}$ (as 18T1) $[2, 542]$ (GRH)
18.0.735565072612935262326166126592.1 x18 + 38x16 + 608x14 + 5320x12 + 27664x10 + 86944x8 + 160512x6 + 160512x4 + 72960x2 + 9728 \( -\,2^{27}\cdot 19^{17} \) $C_{18}$ (as 18T1) $[1026]$ (GRH)
18.0.2322038274967832964613417227771.2 x18 - 9x17 + 45x16 - 156x15 + 504x14 - 1512x13 + 4272x12 - 10422x11 + 24552x10 - 51962x9 + 108099x8 - 193914x7 + 351249x6 - 518733x5 + 814050x4 - 933768x3 + 1272483x2 - 860841x + 992091 \( -\,3^{44}\cdot 11^{9} \) $C_{18}$ (as 18T1) $[1791]$ (GRH)
18.0.3830034706318154794675914145792.1 x18 - 2x17 + 36x16 - 124x15 + 667x14 - 2334x13 + 8164x12 - 20338x11 + 54321x10 - 96972x9 + 150518x8 - 244982x7 + 834376x6 - 2158328x5 + 4885022x4 - 8338866x3 + 13279313x2 - 14690014x + 10525279 \( -\,2^{18}\cdot 19^{16}\cdot 37^{3} \) $C_2\times C_2^2:C_9$ (as 18T26) $[2, 2, 570]$ (GRH)
18.0.3830034706318154794675914145792.2 x18 + 46x16 + 875x14 + 8918x12 + 52728x10 + 183435x8 + 367668x6 + 408591x4 + 229992x2 + 50653 \( -\,2^{18}\cdot 19^{16}\cdot 37^{3} \) 18T264 $[2, 2, 468]$ (GRH)
18.0.5165866906776180186538815258624.1 x18 + 36x16 + 525x14 + 4014x12 + 17550x10 + 45426x8 + 69728x6 + 61395x4 + 28116x2 + 5041 \( -\,2^{18}\cdot 3^{24}\cdot 7^{12}\cdot 71^{2} \) 18T263 $[2, 2, 2, 160]$ (GRH)
18.0.5532813802997213476490534191104.1 x18 + 48x16 + 867x14 + 8006x12 + 42207x10 + 132831x8 + 251956x6 + 280899x4 + 168873x2 + 42121 \( -\,2^{18}\cdot 3^{24}\cdot 73^{3}\cdot 577^{3} \) 18T767 $[2, 1252]$ (GRH)
18.0.7053072320828130442597556717031.1 x18 - 3x17 + 45x16 - 70x15 + 768x14 - 195x13 + 7003x12 + 6999x11 + 44889x10 + 82138x9 + 231111x8 + 417480x7 + 847530x6 + 1108374x5 + 1683297x4 + 1332753x3 + 931392x2 - 168924x + 112589 \( -\,3^{24}\cdot 7^{12}\cdot 71^{5} \) $C_2\times A_4^2$ (as 18T109) $[2, 2, 2, 170]$ (GRH)
18.0.7521294167081161111736000000000.1 x18 - 3x17 - 9x16 + 46x15 + 39x14 - 449x13 + 87x12 + 3323x11 - 5496x10 - 10508x9 + 47263x8 - 31209x7 - 119189x6 + 233575x5 - 20211x4 - 344955x3 + 416495x2 - 217450x + 52025 \( -\,2^{12}\cdot 5^{9}\cdot 7^{9}\cdot 13^{12} \) $S_3 \times C_3$ (as 18T3) $[2, 14, 42]$ (GRH)
18.0.9217661592820801741280239766571.4 x18 - 9x17 + 33x16 - 52x15 + 84x14 - 540x13 + 3178x12 - 11892x11 + 36576x10 - 94398x9 + 242916x8 - 534324x7 + 1183880x6 - 2079090x5 + 3606933x4 - 4490689x3 + 5618562x2 - 3981963x + 3180563 \( -\,3^{24}\cdot 7^{12}\cdot 11^{9} \) $C_6 \times C_3$ (as 18T2) $[36, 36]$ (GRH)
18.0.9490397425838961457555240648704.1 x18 + 42x16 + 693x14 + 5880x12 + 28224x10 + 79380x8 + 130536x6 + 120393x4 + 55566x2 + 9261 \( -\,2^{18}\cdot 3^{27}\cdot 7^{15} \) $C_6 \times C_3$ (as 18T2) $[2, 2, 2, 182]$ (GRH)
18.0.11088656920413061413017818359375.2 x18 - 7x17 + 40x16 - 154x15 + 627x14 - 1979x13 + 6508x12 - 16865x11 + 47380x10 - 103535x9 + 254065x8 - 459765x7 + 999805x6 - 1439914x5 + 2800752x4 - 2907231x3 + 5123532x2 - 2913750x + 4775041 \( -\,3^{9}\cdot 5^{9}\cdot 19^{16} \) $C_{18}$ (as 18T1) $[3258]$ (GRH)
18.0.12065345096686615429034956292096.1 x18 + 48x16 + 873x14 + 8175x12 + 43777x10 + 137970x8 + 250326x6 + 242159x4 + 106935x2 + 16361 \( -\,2^{30}\cdot 37^{6}\cdot 16361^{3} \) 18T837 $[4, 560]$ (GRH)
18.0.13944985186220076513047292273231.1 x18 - 3x17 + 13x16 - 14x15 + 49x14 - 22x13 - 184x12 - 344x11 + 2538x10 - 15190x9 + 54562x8 - 33440x7 + 69570x6 - 112288x5 + 224883x4 - 115871x3 + 162369x2 - 11584x + 215851 \( -\,3^{9}\cdot 7^{12}\cdot 13^{15} \) $C_6 \times C_3$ (as 18T2) $[2, 2, 2, 2, 76]$ (GRH)
18.0.14166424145858741301073711988736.4 x18 - 6x17 + 39x16 - 146x15 + 609x14 - 1806x13 + 5568x12 - 12930x11 + 30840x10 - 58068x9 + 121791x8 - 196452x7 + 321467x6 - 380358x5 + 651183x4 - 775582x3 + 1625814x2 - 1190916x + 1075033 \( -\,2^{27}\cdot 3^{27}\cdot 7^{12} \) $C_6 \times C_3$ (as 18T2) $[2, 18, 54]$ (GRH)
18.0.16528519607100378938441688416256.1 x18 + 57x16 + 1314x14 + 15789x12 + 106527x10 + 406209x8 + 836429x6 + 820710x4 + 272034x2 + 16129 \( -\,2^{18}\cdot 3^{24}\cdot 7^{12}\cdot 127^{2} \) 18T263 $[2, 2, 2, 252]$ (GRH)
18.0.17656106622712745392937787195392.1 x18 + 61x16 + 1420x14 + 16587x12 + 107327x10 + 402576x8 + 882073x6 + 1091004x4 + 689157x2 + 169457 \( -\,2^{18}\cdot 7^{12}\cdot 169457^{3} \) 18T765 $[2, 2176]$ (GRH)
18.0.26953746805951287370186752000000.1 x18 + 24x16 + 243x14 + 1359x12 + 4617x10 + 9864x8 + 13230x6 + 10719x4 + 4743x2 + 867 \( -\,2^{30}\cdot 3^{33}\cdot 5^{6}\cdot 17^{2} \) 18T366 $[2, 2, 340]$ (GRH)
18.0.28277592430157040563214702870528.1 x18 + 57x16 + 1368x14 + 17955x12 + 140049x10 + 660231x8 + 1828332x6 + 2742498x4 + 1869885x2 + 373977 \( -\,2^{18}\cdot 3^{9}\cdot 19^{17} \) $C_{18}$ (as 18T1) $[2, 2786]$ (GRH)
18.0.31329007244264248949886964450839.1 x18 + 54x16 + 1215x14 + 14742x12 + 104247x10 - 1810x9 + 433026x8 - 48870x7 + 1010394x6 - 439830x5 + 1180980x4 - 1466100x3 + 531441x2 - 1319490x + 3335149 \( -\,3^{45}\cdot 13^{9} \) $C_{18}$ (as 18T1) $[2524]$ (GRH)
18.0.31616164379840194492072800177879.3 x18 - 15x16 - 6x15 + 162x14 + 192x13 - 1032x12 - 3222x11 + 2442x10 + 28042x9 + 34182x8 - 85296x7 - 251841x6 - 140562x5 + 260853x4 + 730068x3 + 946224x2 + 563136x + 123904 \( -\,3^{31}\cdot 13^{15} \) $S_3 \times C_6$ (as 18T6) $[3, 468]$ (GRH)
18.0.42902765942005709994121149284352.1 x18 + 36x16 + 484x14 + 3305x12 + 12769x10 + 28966x8 + 38380x6 + 28335x4 + 10332x2 + 1323 \( -\,2^{18}\cdot 3^{9}\cdot 7^{6}\cdot 643^{6} \) 18T632 $[2, 2, 2, 240]$ (GRH)
18.0.43281927256346630219321487392768.1 x18 - 6x17 + 21x16 - 66x15 + 297x14 - 742x13 + 1346x12 - 4058x11 + 9676x10 - 2428x9 + 22175x8 - 86316x7 - 133405x6 - 23318x5 + 742493x4 + 1890250x3 + 3195846x2 + 1805644x + 966337 \( -\,2^{27}\cdot 7^{12}\cdot 13^{12} \) $C_6 \times C_3$ (as 18T2) $[4, 268]$ (GRH)
18.0.51906361512443096981169273175191.1 x18 - 3x17 + 8x16 + 12x15 + 181x14 - 201x13 + 554x12 + 4448x11 + 1722x10 - 19194x9 + 21415x8 + 61786x7 - 43679x6 - 81955x5 + 216263x4 + 55577x3 - 55738x2 - 11032x + 352312 \( -\,3^{9}\cdot 13^{15}\cdot 61^{6} \) $S_3 \times C_6$ (as 18T6) $[2, 2, 2, 140]$ (GRH)
18.0.58116758997176374949719154916247.1 x18 - x17 + 58x16 - 58x15 + 1426x14 - 1426x13 + 19381x12 - 19381x11 + 159430x10 - 159430x9 + 819661x8 - 819661x7 + 2647993x6 - 2647993x5 + 5390491x4 - 5390491x3 + 7260376x2 - 7260376x + 7634353 \( -\,13^{9}\cdot 19^{17} \) $C_{18}$ (as 18T1) $[9774]$ (GRH)
18.0.60940886311952006474852072423424.2 x18 + 48x16 + 828x14 + 6972x12 + 31500x10 + 77112x8 + 96516x6 + 52272x4 + 8208x2 + 216 \( -\,2^{33}\cdot 3^{21}\cdot 7^{14} \) $S_3 \times C_6$ (as 18T6) $[3, 3, 126]$ (GRH)
18.0.89156963198142398832050176000000.1 x18 + 38x16 + 609x14 + 5357x12 + 28133x10 + 89540x8 + 166180x6 + 159887x4 + 57967x2 + 2401 \( -\,2^{30}\cdot 5^{6}\cdot 7^{4}\cdot 19^{12} \) 18T175 $[2, 1120]$ (GRH)
18.0.119665574759900159778264689410048.1 x18 + 37x16 + 518x14 + 3515x12 + 12284x10 + 22200x8 + 20683x6 + 9287x4 + 1591x2 + 37 \( -\,2^{18}\cdot 37^{17} \) $C_{18}$ (as 18T1) $[1526]$ (GRH)
18.0.147682003746622037852672000000000.1 x18 - 2x17 + 30x16 - 50x15 + 552x14 - 814x13 + 6983x12 - 8936x11 + 65641x10 - 72082x9 + 465597x8 - 424984x7 + 2471666x6 - 1778572x5 + 9429355x4 - 4814010x3 + 23461605x2 - 6474360x + 29134601 \( -\,2^{18}\cdot 5^{9}\cdot 19^{16} \) $C_{18}$ (as 18T1) $[8582]$ (GRH)
18.0.179966054889983269121047526375424.4 x18 + 24x16 - 6x15 + 387x14 + 6x13 + 3941x12 - 36x11 + 28167x10 + 5912x9 + 163782x8 + 50502x7 + 623048x6 + 233514x5 + 2503317x4 + 2370846x3 + 8823831x2 + 5384334x + 8256151 \( -\,2^{27}\cdot 3^{24}\cdot 7^{15} \) $C_6 \times C_3$ (as 18T2) $[2, 18, 252]$ (GRH)
18.0.185723426137096770687205679300608.1 x18 - 6x17 + 42x16 - 162x15 + 666x14 - 1946x13 + 5146x12 - 10402x11 + 17101x10 - 23298x9 + 62720x8 - 128674x7 + 171273x6 - 132222x5 + 221722x4 - 340356x3 + 777688x2 - 587872x + 444536 \( -\,2^{18}\cdot 7^{12}\cdot 13^{15} \) $C_6 \times C_3$ (as 18T2) $[2, 2, 2, 18, 18]$ (GRH)
18.0.216033383169661016512360513671875.3 x18 - 3x17 + x16 - x15 + 124x14 + 20x13 - 15x12 - 355x11 + 4994x10 + 14123x9 + 44804x8 + 14520x7 + 74956x6 - 52128x5 + 378444x4 + 597223x3 + 2217367x2 + 2753785x + 3521939 \( -\,5^{9}\cdot 7^{15}\cdot 13^{12} \) $C_6 \times C_3$ (as 18T2) $[6, 6, 78]$ (GRH)
18.0.216258353745310739104685841788928.3 x18 + 36x16 - 60x15 + 468x14 - 1440x13 + 6276x12 - 11160x11 + 48168x10 - 58400x9 + 171936x8 - 208800x7 + 440208x6 - 303840x5 + 590976x4 + 188640x3 + 451008x2 + 1259712 \( -\,2^{12}\cdot 3^{24}\cdot 83^{9} \) $S_3 \times C_3$ (as 18T3) $[2, 2, 2, 126]$ (GRH)
18.0.250219943963063581133732413702144.1 x18 + 56x16 + 1174x14 + 11479x12 + 53662x10 + 118116x8 + 128427x6 + 68376x4 + 16428x2 + 1369 \( -\,2^{26}\cdot 37^{8}\cdot 101^{6} \) 18T461 $[2, 2, 326]$ (GRH)
18.0.265529453168247662686860141155127.2 x18 - 3x17 - 24x16 + 80x15 + 264x14 - 996x13 - 208x12 + 3414x11 - 1398x10 - 4424x9 + 45528x8 - 108612x7 + 306560x6 - 431268x5 + 994161x4 - 776387x3 + 1606332x2 - 619836x + 1068904 \( -\,3^{24}\cdot 7^{9}\cdot 13^{12} \) $C_6 \times C_3$ (as 18T2) $[4, 532]$ (GRH)
18.0.317773455265378312682733715471299.2 x18 - 9x17 + 63x16 - 300x15 + 1368x14 - 5040x13 + 18192x12 - 54630x11 + 164196x10 - 411866x9 + 1056267x8 - 2200338x7 + 4844985x6 - 8116569x5 + 15278400x4 - 19032684x3 + 30278943x2 - 21799593x + 28658393 \( -\,3^{44}\cdot 19^{9} \) $C_{18}$ (as 18T1) $[2, 3746]$ (GRH)
18.0.346995740849617491120493646484375.1 x18 - 6x17 + 9x16 + 10x15 + 48x14 - 84x13 - 486x12 + 372x11 + 3765x10 + 6720x9 + 26967x8 - 27264x7 + 6863x6 - 52260x5 + 123351x4 + 147158x3 + 602835x2 + 711594x + 1307431 \( -\,3^{27}\cdot 5^{9}\cdot 13^{12} \) $C_6 \times C_3$ (as 18T2) $[2, 14, 98]$ (GRH)
18.0.374995864672776683690097475584000.1 x18 + 45x16 + 708x14 + 5093x12 + 18705x10 + 36303x8 + 37039x6 + 19110x4 + 4500x2 + 375 \( -\,2^{18}\cdot 3^{27}\cdot 5^{3}\cdot 107^{6} \) 18T175 $[2, 2, 2, 182]$ (GRH)
18.0.374995864672776683690097475584000.2 x18 + 27x16 + 300x14 + 1790x12 + 6291x10 + 13431x8 + 17229x6 + 12465x4 + 4275x2 + 375 \( -\,2^{18}\cdot 3^{27}\cdot 5^{3}\cdot 107^{6} \) 18T367 $[2, 2, 2, 308]$ (GRH)
18.0.426586204183664045323964506963968.6 x18 + 48x16 + 960x14 + 10380x12 + 65808x10 + 247680x8 + 531252x6 + 576072x4 + 226800x2 + 1512 \( -\,2^{33}\cdot 3^{21}\cdot 7^{15} \) $S_3 \times C_6$ (as 18T6) $[2, 1638]$ (GRH)
18.0.497863107144137244036834347537287.1 x18 - 7x17 + 6x16 + 62x15 - 87x14 - 453x13 + 1582x12 - 2109x11 + 4032x10 - 13245x9 + 41381x8 - 73223x7 + 125132x6 - 153409x5 + 331388x4 - 449504x3 + 758771x2 - 538288x + 477047 \( -\,7^{9}\cdot 37^{16} \) $C_{18}$ (as 18T1) $[9, 171]$ (GRH)
18.0.526677118301850649055916906437559.2 x18 + 36x16 - 15x15 + 486x14 - 315x13 + 3642x12 - 2025x11 + 16344x10 - 1415x9 + 43740x8 + 17055x7 + 96036x6 + 44955x5 + 143037x4 + 65865x3 + 93636x2 + 52020x + 39304 \( -\,3^{39}\cdot 37^{9} \) $S_3 \times C_3$ (as 18T3) $[2, 14, 56]$ (GRH)
18.0.591675863121548288056467444989952.1 x18 + 18x16 - 44x15 + 234x14 - 204x13 + 614x12 - 2664x11 + 24636x10 - 67840x9 + 228168x8 - 423168x7 + 827536x6 - 1017216x5 + 1105152x4 - 712448x3 + 258048x2 - 49152x + 8192 \( -\,2^{26}\cdot 3^{24}\cdot 23^{3}\cdot 37^{6} \) 18T228 $[2, 522]$ (GRH)
18.0.591706382841388634460616841610087.1 x18 - 9x17 + 32x16 - 52x15 + 468x14 - 3080x13 + 9624x12 - 17418x11 + 52764x10 - 178658x9 + 328020x8 - 303784x7 + 59180x6 + 192540x5 - 234155x4 + 122397x3 + 27498x2 - 55368x + 36072 \( -\,3^{9}\cdot 7^{12}\cdot 109^{9} \) $C_3^2 : C_2$ (as 18T4) $[2, 18, 36]$ (GRH)
18.0.648099416547998746795472637325312.1 x18 - 3x17 - 18x16 + 14x15 + 269x14 + 227x13 - 1018x12 - 2013x11 + 4834x10 + 14595x9 + 19966x8 + 34739x7 + 153456x6 + 301625x5 + 410031x4 + 401368x3 + 783486x2 + 990627x + 869143 \( -\,2^{12}\cdot 7^{9}\cdot 11^{6}\cdot 19^{12} \) $S_3 \times C_6$ (as 18T6) $[2, 2, 884]$ (GRH)
18.0.691304233720361896816117357477888.1 x18 + 7x16 - 46x15 + 314x14 - 784x13 + 1633x12 - 8962x11 + 34964x10 + 25180x9 - 53723x8 + 135014x7 + 552807x6 - 1492424x5 + 3232214x4 - 3603978x3 + 3591174x2 - 1826896x + 994969 \( -\,2^{18}\cdot 13^{15}\cdot 61^{6} \) $S_3 \times C_6$ (as 18T6) $[2, 2224]$ (GRH)
18.0.699527696599455687770027884019712.2 x18 + 41x16 + 533x14 + 3209x12 + 10264x10 + 18280x8 + 18027x6 + 9423x4 + 2430x2 + 243 \( -\,2^{18}\cdot 3^{9}\cdot 53^{4}\cdot 107^{8} \) 18T881 $[1666]$ (GRH)
18.0.718606633367888171454789870996879.2 x18 - 18x16 - 54x15 + 117x14 + 648x13 + 2301x12 - 2511x11 - 14661x10 - 10260x9 + 29970x8 + 48843x7 + 71814x6 - 44469x5 - 107280x4 + 185679x3 + 56880x2 + 512000 \( -\,3^{24}\cdot 239^{9} \) $S_3 \times C_3$ (as 18T3) $[3, 3, 3, 45]$ (GRH)
18.0.760380330951008959273099338892571.1 x18 - 3x17 - 11x16 + 24x15 + 202x14 - 266x13 + 338x12 - 612x11 + 9498x10 - 7614x9 + 87170x8 + 3818x7 + 549956x6 + 100280x5 + 2351913x4 - 160053x3 + 6350272x2 - 399099x + 7656713 \( -\,7^{12}\cdot 11^{9}\cdot 13^{12} \) $C_6 \times C_3$ (as 18T2) $[14, 182]$ (GRH)
18.0.781241669227223662759334318964736.1 x18 + 35x16 + 427x14 + 2567x12 + 8760x10 + 18018x8 + 22621x6 + 16835x4 + 6774x2 + 1129 \( -\,2^{18}\cdot 1129^{9} \) 18T375 $[2, 1372]$ (GRH)
Next

In order to download results, determine the number of results.