Further refine search
Results (displaying matches 1-50 of at least 1000) Next
| Label | Polynomial | Discriminant | Galois group | Class group |
|---|---|---|---|---|
| 18.0.149385972680924763865244423159808.1 | x18 + 75x16 + 2178x14 + 32829x12 + 283689x10 + 1444041x8 + 4240305x6 + 6661035x4 + 4752513x2 + 1137267 | \( -\,2^{18}\cdot 3^{27}\cdot 73^{3}\cdot 577^{3} \) | 18T767 | $[2, 4, 1548]$ (GRH) |
| 18.0.350345670377968069507061800493571.1 | x18 + 72x16 + 2160x14 + 34944x12 + 329472x10 - 4693x9 + 1824768x8 - 168948x7 + 5677056x6 - 2027376x5 + 8847360x4 - 9010560x3 + 5308416x2 - 10812672x + 22810681 | \( -\,3^{45}\cdot 17^{9} \) | $C_{18}$ (as 18T1) | $[2, 2, 2774]$ (GRH) |
| 18.0.504202701918008951235072000000000.2 | x18 + 27x16 + 495x14 + 6219x12 + 59292x10 - 2x9 + 430038x8 + 378x7 + 2361801x6 - 8244x5 + 9427185x4 + 39510x3 + 24883956x2 - 34668x + 33385281 | \( -\,2^{18}\cdot 3^{44}\cdot 5^{9} \) | $C_{18}$ (as 18T1) | $[24966]$ (GRH) |
| 18.0.519527019723470744090368949777303.1 | x18 - 7x17 + 58x16 - 266x15 + 1435x14 - 5199x13 + 21866x12 - 64937x11 + 227650x10 - 559943x9 + 1686287x8 - 3386581x7 + 8904619x6 - 13996282x5 + 32437184x4 - 36161351x3 + 74452082x2 - 44882086x + 83092129 | \( -\,19^{16}\cdot 23^{9} \) | $C_{18}$ (as 18T1) | $[13149]$ (GRH) |
| 18.0.649907439846766024629709761975683.1 | x18 - x17 + 77x16 - 77x15 + 2509x14 - 2509x13 + 45069x12 - 45069x11 + 487693x10 - 487693x9 + 3269901x8 - 3269901x7 + 13542669x6 - 13542669x5 + 34088205x4 - 34088205x3 + 52765965x2 - 52765965x + 57746701 | \( -\,17^{9}\cdot 19^{17} \) | $C_{18}$ (as 18T1) | $[38836]$ (GRH) |
| 18.0.762006701275810777282417256300544.1 | x18 - 2x17 + 39x16 - 66x15 + 860x14 - 1276x13 + 12807x12 - 16470x11 + 138889x10 - 152462x9 + 1120553x8 - 1017454x7 + 6677144x6 - 4749676x5 + 28239050x4 - 14144668x3 + 76910381x2 - 20623090x + 103115431 | \( -\,2^{27}\cdot 3^{9}\cdot 19^{16} \) | $C_{18}$ (as 18T1) | $[18506]$ (GRH) |
| 18.0.869245000449362794439473301291008.1 | x18 + 66x16 + 1747x14 + 23660x12 + 173859x10 + 685517x8 + 1396052x6 + 1433185x4 + 689767x2 + 122317 | \( -\,2^{18}\cdot 7^{16}\cdot 13^{9}\cdot 97^{2} \) | 18T586 | $[2, 4, 1584]$ (GRH) |
| 18.0.1119284599813901503934006266380351.1 | x18 - 6x17 + 57x16 - 212x15 + 1206x14 - 2976x13 + 12940x12 - 17568x11 + 83169x10 - 40258x9 + 573705x8 - 365916x7 + 4002937x6 - 3216606x5 + 17344149x4 - 10599756x3 + 31588815x2 - 10143966x + 34082749 | \( -\,3^{27}\cdot 7^{12}\cdot 13^{9} \) | $C_6 \times C_3$ (as 18T2) | $[2, 10, 1580]$ (GRH) |
| 18.0.1261446981901370189638661902928499.8 | x18 - 9x17 + 51x16 - 196x15 + 804x14 - 3012x13 + 12898x12 - 46452x11 + 170676x10 - 511402x9 + 1574124x8 - 3865668x7 + 9988128x6 - 19346514x5 + 40437777x4 - 56155537x3 + 89390700x2 - 70039875x + 77095313 | \( -\,3^{24}\cdot 7^{12}\cdot 19^{9} \) | $C_6 \times C_3$ (as 18T2) | $[18, 558]$ (GRH) |
| 18.0.1773722731399331010404115847164903.2 | x18 - 9x17 + 72x16 - 372x15 + 1908x14 - 7560x13 + 30192x12 - 97146x11 + 320526x10 - 855266x9 + 2391597x8 - 5261490x7 + 12570585x6 - 22062519x5 + 44899785x4 - 57927960x3 + 99243441x2 - 73205505x + 103239849 | \( -\,3^{44}\cdot 23^{9} \) | $C_{18}$ (as 18T1) | $[37449]$ (GRH) |
| 18.0.2001504424181159874396672000000000.16 | x18 + 15x16 - 8x15 + 333x14 + 24x13 + 5655x12 + 2670x11 + 69687x10 + 43582x9 + 674097x8 + 378498x7 + 4862043x6 + 2018526x5 + 23403354x4 + 6369416x3 + 65929308x2 + 9405912x + 82566296 | \( -\,2^{18}\cdot 3^{24}\cdot 5^{9}\cdot 7^{12} \) | $C_6 \times C_3$ (as 18T2) | $[6, 6, 6, 6, 18]$ (GRH) |
| 18.0.2939487800594529948360199110656000.1 | x18 + 68x16 + 1627x14 + 19505x12 + 131697x10 + 516410x8 + 1146558x6 + 1326597x4 + 683179x2 + 102185 | \( -\,2^{30}\cdot 5^{3}\cdot 37^{6}\cdot 107^{3}\cdot 191^{3} \) | 18T837 | $[2, 2, 2, 1444]$ (GRH) |
| 18.0.3192433564329392175935038228267008.1 | x18 + 93x16 + 3519x14 + 70211x12 + 806046x10 + 5497452x8 + 22162597x6 + 50450268x4 + 57830979x2 + 24303817 | \( -\,2^{18}\cdot 3^{24}\cdot 73^{3}\cdot 577^{4} \) | 18T765 | $[2, 2, 10388]$ (GRH) |
| 18.0.4352961928683212902721499543224559.1 | x18 - x17 + 96x16 - 96x15 + 3896x14 - 3896x13 + 87021x12 - 87021x11 + 1167646x10 - 1167646x9 + 9658271x8 - 9658271x7 + 48845771x6 - 48845771x5 + 146814521x4 - 146814521x3 + 258142646x2 - 258142646x + 295252021 | \( -\,3^{9}\cdot 7^{9}\cdot 19^{17} \) | $C_{18}$ (as 18T1) | $[2, 2, 2, 6632]$ (GRH) |
| 18.0.4859083482029548266268283212136448.1 | x18 + 84x16 + 2772x14 + 47040x12 + 451584x10 + 2540160x8 + 8354304x6 + 15410304x4 + 14224896x2 + 4741632 | \( -\,2^{27}\cdot 3^{27}\cdot 7^{15} \) | $C_6 \times C_3$ (as 18T2) | $[2, 2, 28, 364]$ (GRH) |
| 18.0.7041044961999737113734118289433303.2 | x18 - 9x17 + 60x16 - 268x15 + 1272x14 - 5004x13 + 22294x12 - 81192x11 + 315630x10 - 978324x9 + 3218604x8 - 8208228x7 + 22683008x6 - 45561114x5 + 102647091x4 - 147782137x3 + 257711352x2 - 208331724x + 258264152 | \( -\,3^{24}\cdot 7^{12}\cdot 23^{9} \) | $C_6 \times C_3$ (as 18T2) | $[3, 6, 3942]$ (GRH) |
| 18.0.7626281990217745472007517214473951.1 | x18 - 7x17 + 76x16 - 378x15 + 2531x14 - 9987x13 + 50888x12 - 164417x11 + 687416x10 - 1828199x9 + 6495797x8 - 13992021x7 + 43041793x6 - 71859458x5 + 193370792x4 - 226538639x3 + 536835424x2 - 336518414x + 707215681 | \( -\,19^{16}\cdot 31^{9} \) | $C_{18}$ (as 18T1) | $[2, 39906]$ (GRH) |
| 18.0.8610038236258048513179648000000000.2 | x18 + 9x16 - 16x15 + 360x14 + 240x13 + 3928x12 - 1680x11 + 49218x10 + 47424x9 + 559842x8 + 375408x7 + 3618320x6 + 3283728x5 + 27436416x4 + 39093488x3 + 139982661x2 + 126029568x + 236250749 | \( -\,2^{24}\cdot 3^{18}\cdot 5^{9}\cdot 7^{14} \) | $S_3 \times C_6$ (as 18T6) | $[6, 6, 378]$ (GRH) |
| 18.0.12397041052269497924235545162109375.1 | x18 - 3x17 - 2x16 + 226x14 - 314x13 + 2056x12 - 2712x11 + 26144x10 - 23076x9 + 264952x8 - 69734x7 + 1914474x6 - 24520x5 + 9403275x4 - 679057x3 + 28645658x2 - 1743720x + 39701416 | \( -\,3^{9}\cdot 5^{9}\cdot 7^{12}\cdot 13^{12} \) | $C_6 \times C_3$ (as 18T2) | $[2, 2, 2, 20, 140]$ (GRH) |
| 18.0.12516723252931349928823131701451339.1 | x18 - 6x17 + 75x16 - 299x15 + 2178x14 - 5913x13 + 32653x12 - 52812x11 + 291324x10 - 201688x9 + 2166219x8 - 907068x7 + 15298582x6 - 8508129x5 + 75490509x4 - 37914480x3 + 173222787x2 - 45736635x + 210280141 | \( -\,3^{27}\cdot 7^{12}\cdot 17^{9} \) | $C_6 \times C_3$ (as 18T2) | $[2, 2, 13286]$ (GRH) |
| 18.0.14219059916154378364791264791424459.2 | x18 - 3x17 + 51x16 - 145x15 + 1377x14 - 4017x13 + 24968x12 - 71760x11 + 328884x10 - 886259x9 + 3240978x8 - 7306587x7 + 21644553x6 - 36408891x5 + 88661442x4 - 102732573x3 + 217719351x2 - 173351430x + 337293181 | \( -\,3^{24}\cdot 7^{15}\cdot 13^{9} \) | $C_6 \times C_3$ (as 18T2) | $[2, 2, 8246]$ (GRH) |
| 18.0.14845701048926894165227270175719424.3 | x18 - 6x17 + 33x16 - 130x15 + 633x14 - 1870x13 + 6342x12 - 16970x11 + 50908x10 - 87252x9 + 276223x8 - 443116x7 + 892387x6 - 960518x5 + 5324905x4 + 4622682x3 + 21350862x2 + 11905764x + 19683833 | \( -\,2^{27}\cdot 7^{15}\cdot 13^{12} \) | $C_6 \times C_3$ (as 18T2) | $[6, 6, 1092]$ (GRH) |
| 18.0.21137726688804112981348984293163008.2 | x18 - 4x17 + 20x16 - 38x15 - 56x14 + 42x13 - 1868x12 - 2142x11 - 766x10 - 7126x9 + 94236x8 + 435918x7 + 1272160x6 + 4190046x5 + 10123484x4 + 18327094x3 + 32238933x2 + 42657746x + 24890048 | \( -\,2^{18}\cdot 3^{6}\cdot 7^{15}\cdot 13^{12} \) | $S_3 \times C_6$ (as 18T6) | $[3, 3, 2184]$ (GRH) |
| 18.0.23845365740806374055553449712418816.1 | x18 - 6x17 + 27x16 - 98x15 + 441x14 - 1194x13 + 3092x12 - 8442x11 + 21552x10 - 23424x9 + 91239x8 - 177996x7 + 55755x6 - 228654x5 + 1834899x4 + 3117170x3 + 7609494x2 + 4744224x + 4634713 | \( -\,2^{27}\cdot 3^{27}\cdot 13^{12} \) | $C_6 \times C_3$ (as 18T2) | $[2, 2, 3458]$ (GRH) |
| 18.0.26036970568557781217070611380223151.1 | x18 - 9x17 + 90x16 - 516x15 + 3204x14 - 14112x13 + 66792x12 - 238122x11 + 919602x10 - 2697362x9 + 8749269x8 - 20953674x7 + 57705369x6 - 108970803x5 + 254607615x4 - 347840628x3 + 682386453x2 - 523610901x + 844617131 | \( -\,3^{44}\cdot 31^{9} \) | $C_{18}$ (as 18T1) | $[93339]$ (GRH) |
| 18.0.29091207730813357496487416074727531.2 | x18 - 7x17 + 15x16 + 6x15 + 41x14 - 547x13 + 2399x12 - 6459x11 + 19848x10 - 51876x9 + 153844x8 - 309033x7 + 710103x6 - 1068295x5 + 2318748x4 - 2871539x3 + 5252508x2 - 3731965x + 4399861 | \( -\,11^{9}\cdot 37^{16} \) | $C_{18}$ (as 18T1) | $[38, 342]$ (GRH) |
| 18.0.29585973151813465955360437434322443.1 | x18 - 3x17 + 60x16 - 157x15 + 1116x14 - 1161x13 + 3951x12 + 16026x11 + 7536x10 - 5656x9 + 654144x8 + 635424x7 + 1444480x6 + 14185344x5 + 24462336x4 + 8265216x3 + 41054208x2 + 180725760x + 207974400 | \( -\,3^{21}\cdot 521^{9} \) | $D_9$ (as 18T5) | $[85, 170]$ (GRH) |
| 18.0.43398229994269610052656606538315887.1 | x18 + 70x16 - 4x15 + 1925x14 - 210x13 + 27573x12 - 4025x11 + 230055x10 - 36104x9 + 1167950x8 - 164045x7 + 3604930x6 - 360675x5 + 6472620x4 - 293353x3 + 6075300x2 + 2299968 | \( -\,7^{12}\cdot 17^{9}\cdot 31^{9} \) | $S_3 \times C_3$ (as 18T3) | $[3, 3, 9, 9, 18]$ (GRH) |
| 18.0.61268774277068881806471520977944576.1 | x18 + 74x16 + 2072x14 + 28120x12 + 196544x10 + 710400x8 + 1323712x6 + 1188736x4 + 407296x2 + 18944 | \( -\,2^{27}\cdot 37^{17} \) | $C_{18}$ (as 18T1) | $[17, 1190]$ (GRH) |
| 18.0.74422866183848971206656000000000000.1 | x18 + 113x16 + 4986x14 + 109769x12 + 1290015x10 + 8207609x8 + 29008613x6 + 56338590x4 + 55167918x2 + 20511149 | \( -\,2^{30}\cdot 5^{12}\cdot 7^{12}\cdot 29^{5} \) | 18T176 | $[2, 2, 6, 1536]$ (GRH) |
| 18.0.74849463536141758591392983590109184.2 | x18 + 57x16 + 1211x14 + 12568x12 + 72546x10 + 245270x8 + 483426x6 + 518415x4 + 248454x2 + 26001 | \( -\,2^{18}\cdot 3^{9}\cdot 53^{4}\cdot 107^{9} \) | 18T781 | $[2, 5006]$ (GRH) |
| 18.0.78582417975702211875446018069790723.2 | x18 - x17 + 47x16 + 32x15 + 1551x14 + 1282x13 + 23855x12 + 46050x11 + 258875x10 + 362877x9 + 1037476x8 + 1297357x7 + 2797383x6 + 2663843x5 + 3326344x4 + 1462041x3 + 1415022x2 + 277585x + 519841 | \( -\,3^{9}\cdot 7^{12}\cdot 19^{16} \) | $C_{18}$ (as 18T1) | $[3, 3, 3, 657]$ (GRH) |
| 18.0.79892001943166438658690014520815616.1 | x18 - 3x17 + 33x16 - 91x15 + 972x14 - 3216x13 + 17387x12 - 47466x11 + 246777x10 - 744566x9 + 2781420x8 - 5768394x7 + 20679591x6 - 45616323x5 + 134273652x4 - 125897574x3 + 462427464x2 - 1117528098x + 2682840203 | \( -\,2^{12}\cdot 3^{18}\cdot 7^{15}\cdot 13^{9} \) | $S_3 \times C_6$ (as 18T6) | $[2, 2, 2, 2, 4, 468]$ (GRH) |
| 18.0.87039873532075611618416695574933504.1 | x18 - 7x17 + 21x16 - 10x15 - 25x14 - 337x13 + 3019x12 - 11321x11 + 32356x10 - 81340x9 + 216453x8 - 535373x7 + 1224513x6 - 2351635x5 + 4043761x4 - 5640557x3 + 6680809x2 - 5296030x + 2999263 | \( -\,2^{12}\cdot 11^{9}\cdot 37^{14} \) | $S_3 \times C_6$ (as 18T6) | $[2, 6, 24, 72]$ (GRH) |
| 18.0.95090394182193546591849307801911296.2 | x18 - 6x17 + 81x16 - 370x15 + 2577x14 - 9226x13 + 39726x12 - 107954x11 + 304596x10 - 615760x9 + 1620055x8 - 2975076x7 + 6181459x6 - 8245054x5 + 15664617x4 - 17759238x3 + 36433958x2 - 26053208x + 31314401 | \( -\,2^{27}\cdot 7^{12}\cdot 13^{15} \) | $C_6 \times C_3$ (as 18T2) | $[2, 2, 6, 6, 378]$ (GRH) |
| 18.0.104058872623657018481772248523222499.4 | x18 - 3x17 + 7x16 - 24x15 + 322x14 - 530x13 + 4726x12 - 6396x11 + 62002x10 - 59326x9 + 668982x8 - 297270x7 + 5328864x6 - 804120x5 + 29142209x4 - 3014537x3 + 98419102x2 - 6470051x + 152453839 | \( -\,7^{12}\cdot 13^{12}\cdot 19^{9} \) | $C_6 \times C_3$ (as 18T2) | $[18, 1638]$ (GRH) |
| 18.0.144702241276662140714874256260206223.2 | x18 - 3x17 + 18x16 - 147x15 + 822x14 - 1827x13 - 99x12 + 6528x11 + 29988x10 - 74840x9 - 40512x8 + 12960x7 + 1123200x6 - 1445376x5 - 829440x4 + 1155072x3 + 3244032x2 - 4718592x + 2097152 | \( -\,3^{30}\cdot 7^{15}\cdot 23^{6} \) | $S_3 \times C_6$ (as 18T6) | $[2, 2, 3192]$ (GRH) |
| 18.0.165107449555765648724828672000000000.4 | x18 + 5x16 - 16x15 + 306x14 + 172x13 + 5100x12 + 4488x11 + 75533x10 + 72264x9 + 817621x8 + 822724x7 + 6632797x6 + 5813816x5 + 37070685x4 + 21380228x3 + 129463023x2 + 35149140x + 219558249 | \( -\,2^{18}\cdot 5^{9}\cdot 7^{12}\cdot 13^{12} \) | $C_6 \times C_3$ (as 18T2) | $[2, 2, 2, 18, 558]$ (GRH) |
| 18.0.179099310176045734691646526162025107.1 | x18 - 7x17 + 60x16 - 170x15 + 1392x14 - 4613x13 + 24354x12 - 23677x11 + 48833x10 - 35038x9 + 59244x8 - 39753x7 + 33797x6 - 10244x5 + 1771x4 - 295x3 + 43x2 - 8x + 1 | \( -\,37^{12}\cdot 67^{9} \) | $S_3 \times C_3$ (as 18T3) | $[2, 2, 2, 2, 8, 344]$ (GRH) |
| 18.0.210287410844167058761982755564945408.5 | x18 - 2x17 + 19x16 + 38x15 + 81x14 + 826x13 + 3336x12 + 3902x11 + 45764x10 - 17244x9 + 40103x8 - 540496x7 - 196809x6 - 1431434x5 - 69861x4 - 50646490x3 + 64290142x2 + 55016416x + 1769766817 | \( -\,2^{18}\cdot 7^{12}\cdot 157^{9} \) | $S_3 \times C_3$ (as 18T3) | $[6, 18, 126]$ (GRH) |
| 18.0.215154340657376220394997912000000000.1 | x18 - 3x17 + 47x16 - 172x15 + 1517x14 - 5332x13 + 22374x12 - 75980x11 + 148668x10 + 42506x9 - 580776x8 + 29214x7 + 5997076x6 - 20620332x5 + 41420961x4 - 55016363x3 + 52690863x2 - 31834602x + 13067109 | \( -\,2^{12}\cdot 5^{9}\cdot 11^{6}\cdot 19^{15} \) | $S_3 \times C_6$ (as 18T6) | $[2, 2, 4, 4312]$ (GRH) |
| 18.0.231020214178968501941151058507071488.1 | x18 + 76x16 + 2166x14 + 29716x12 + 209741x10 + 768208x8 + 1451581x6 + 1344364x4 + 521284x2 + 54872 | \( -\,2^{33}\cdot 11^{6}\cdot 19^{15} \) | $S_3 \times C_6$ (as 18T6) | $[90, 180]$ (GRH) |
| 18.0.243706199334710775656643000000000000.5 | x18 - 2375x12 + 2291875x6 + 421875 | \( -\,2^{12}\cdot 3^{21}\cdot 5^{12}\cdot 13^{12} \) | $C_3^2 : C_2$ (as 18T4) | $[3, 3, 6, 6, 6, 6]$ (GRH) |
| 18.0.295307224547164431964209152000000000.1 | x18 - 2x17 + 20x16 - 58x15 + 421x14 - 516x13 + 6419x12 - 2572x11 + 71211x10 + 17826x9 + 639262x8 + 466198x7 + 4295158x6 + 3906398x5 + 19859011x4 + 16508326x3 + 53966797x2 + 27726080x + 60112841 | \( -\,2^{24}\cdot 5^{9}\cdot 37^{14} \) | $S_3 \times C_6$ (as 18T6) | $[2, 2, 2, 4238]$ (GRH) |
| 18.0.308154864637927691969232913151717376.2 | x18 - 9x17 + 96x16 - 518x15 + 3228x14 - 10782x13 + 42574x12 - 97176x11 + 161823x10 - 297157x9 - 55194x8 + 410082x7 + 2610916x6 - 4401372x5 + 87864060x4 - 169850772x3 + 539250456x2 - 713931504x + 599486056 | \( -\,2^{12}\cdot 3^{21}\cdot 7^{14}\cdot 13^{9} \) | $S_3 \times C_6$ (as 18T6) | $[2, 2, 2, 4, 4, 468]$ (GRH) |
| 18.0.330204794362909836518332446749753344.1 | x18 - 2x17 + 50x16 + 26x15 + 958x14 + 606x13 + 11197x12 + 636x11 + 68077x10 - 139670x9 + 170189x8 - 1801562x7 + 93271x6 - 6155838x5 + 11588776x4 + 36901748x3 + 100260832x2 + 145398680x + 203590394 | \( -\,2^{18}\cdot 13^{2}\cdot 193^{6}\cdot 229^{6} \) | 18T769 | $[2, 2, 2, 12460]$ (GRH) |
| 18.0.347294177030908919809654319019700224.1 | x18 - 9x17 + 45x16 - 140x15 + 600x14 - 2856x13 + 12354x12 - 36498x11 + 109749x10 - 332479x9 + 1175109x8 - 3139962x7 + 7914304x6 - 16057650x5 + 41336448x4 - 89051570x3 + 194857845x2 - 245213451x + 260439319 | \( -\,2^{12}\cdot 3^{18}\cdot 7^{14}\cdot 19^{9} \) | $S_3 \times C_6$ (as 18T6) | $[3, 15, 1260]$ (GRH) |
| 18.0.410403006358127324860166545115234375.1 | x18 - 3x17 + 52x16 - 252x15 + 1402x14 - 7266x13 + 25794x12 - 86808x11 + 256538x10 - 407056x9 + 647468x8 - 1953586x7 + 6247014x6 - 12462682x5 + 21097703x4 - 27033887x3 + 29682552x2 - 16477776x + 14492736 | \( -\,5^{9}\cdot 7^{12}\cdot 19^{15} \) | $C_6 \times C_3$ (as 18T2) | $[2, 26, 728]$ (GRH) |
| 18.0.451985616395723240517472053274603584.1 | x18 + 81x16 - 221x15 + 2784x14 - 10842x13 + 57423x12 - 210678x11 + 718602x10 - 2094040x9 + 5830770x8 - 15415413x7 + 39375297x6 - 88940514x5 + 164458332x4 - 232245897x3 + 233241462x2 - 147873180x + 45232552 | \( -\,2^{6}\cdot 3^{24}\cdot 13^{12}\cdot 181^{4} \) | 18T459 | $[2, 2, 2, 7026]$ (GRH) |
| 18.0.474295404311594698259070089068359375.1 | x18 - 7x17 + 24x16 - 50x15 + 241x14 - 1033x13 + 4672x12 - 14541x11 + 52234x10 - 139961x9 + 445351x8 - 952935x7 + 2517118x6 - 4112929x5 + 9673910x4 - 11979744x3 + 23891131x2 - 16951280x + 24056839 | \( -\,3^{9}\cdot 5^{9}\cdot 37^{16} \) | $C_{18}$ (as 18T1) | $[37058]$ (GRH) |
In order to download results, determine the number of results.