| 18.0.184816991082370630395707686096416257574727.1 |
x18 - 7x17 - 74x16 + 408x15 + 2558x14 - 8242x13 - 39184x12 + 84268x11 + 374289x10 - 488799x9 - 1668350x8 + 2701876x7 + 6853576x6 - 8927584x5 + 2280064x4 + 44681728x3 + 24702976x2 - 40402944x + 165412864 |
\( -\,7^{9}\cdot 127^{16} \) |
$C_{18}$ (as 18T1) |
$[9, 11861703]$
(GRH)
|
| 18.0.3965425743251446234740452651360873660809216.1 |
x18 - 9x17 + 521x16 - 2814x15 + 101712x14 - 273354x13 + 9930737x12 - 4915819x11 + 542574306x10 + 675680245x9 + 17329976899x8 + 41353096938x7 + 318706023622x6 + 865142724388x5 + 3020376551570x4 + 6566549151730x3 + 12083146048786x2 + 2900073393380x + 24315241393928 |
\( -\,2^{18}\cdot 13^{2}\cdot 193^{6}\cdot 229^{9} \) |
18T769 |
$[2, 2, 2, 12, 2131164]$
(GRH)
|
| 18.0.4129014843306746341732347206220114431311872.1 |
x18 + 546x16 + 97461x14 + 7758660x12 + 321369048x10 + 7362272736x8 + 93766723596x6 + 635072713821x4 + 2051773383114x2 + 2393735613633 |
\( -\,2^{18}\cdot 3^{27}\cdot 7^{9}\cdot 13^{15} \) |
$C_6 \times C_3$ (as 18T2) |
$[2, 2, 2, 2, 2, 532, 6916]$
(GRH)
|
| 18.0.4424130270896887308908712516757313137831936.1 |
x18 - 7x17 + 174x16 - 962x15 + 13779x14 - 64155x13 + 676338x12 - 2722651x11 + 22786278x10 - 79178651x9 + 540532502x8 - 1583274847x7 + 8881121966x6 - 20860733787x5 + 95605863343x4 - 162811998196x3 + 597897722246x2 - 567101046533x + 1602731119741 |
\( -\,2^{12}\cdot 37^{14}\cdot 79^{9} \) |
$S_3 \times C_6$ (as 18T6) |
$[6, 6, 2997540]$
(GRH)
|
| 18.0.6900600992399474037809909297898044762796032.1 |
x18 - 7x17 + 183x16 - 1018x15 + 15239x14 - 71437x13 + 783481x12 - 3170897x11 + 27539182x10 - 96044632x9 + 679813833x8 - 1995570269x7 + 11609272935x6 - 27289998619x5 + 129902924239x4 - 221021307185x3 + 845688187315x2 - 799383089986x + 2368812673291 |
\( -\,2^{12}\cdot 37^{14}\cdot 83^{9} \) |
$S_3 \times C_6$ (as 18T6) |
$[3, 6, 8545770]$
(GRH)
|
| 18.0.10540406459397059490686352709797854892453888.1 |
x18 - 7x17 + 192x16 - 1074x15 + 16771x14 - 79111x13 + 901320x12 - 3666123x11 + 33000244x10 - 115487055x9 + 846514320x8 - 2489903023x7 + 15004567540x6 - 35293480367x5 + 174264924081x4 - 296201831072x3 + 1179077566010x2 - 1110688906253x + 3443926733743 |
\( -\,2^{12}\cdot 3^{9}\cdot 29^{9}\cdot 37^{14} \) |
$S_3 \times C_6$ (as 18T6) |
$[2, 2, 2, 2, 2, 12, 12, 33912]$
(GRH)
|
| 18.0.15796345197168827671044286969235239338717184.1 |
x18 - 7x17 + 201x16 - 1130x15 + 18375x14 - 87177x13 + 1030359x12 - 4210681x11 + 39236496x10 - 137757260x9 + 1044507053x8 - 3077994253x7 + 19191974213x6 - 45165879675x5 + 231046792381x4 - 392285922997x3 + 1622269413029x2 - 1522944032030x + 4931895139903 |
\( -\,2^{12}\cdot 7^{9}\cdot 13^{9}\cdot 37^{14} \) |
$S_3 \times C_6$ (as 18T6) |
$[2, 2, 2, 28713636]$
(GRH)
|
| 18.0.23264650494782882410421125533525848000000000.1 |
x18 - 7x17 + 210x16 - 1186x15 + 20051x14 - 95635x13 + 1171102x12 - 4806923x11 + 46317994x10 - 163118347x9 + 1278014562x8 - 3772636223x7 + 24313306146x6 - 57241530331x5 + 303026115883x4 - 513902613356x3 + 2204925392350x2 - 2062907686453x + 6965060119081 |
\( -\,2^{12}\cdot 5^{9}\cdot 19^{9}\cdot 37^{14} \) |
$S_3 \times C_6$ (as 18T6) |
$[2, 2, 6, 12, 820872]$
(GRH)
|
| 18.0.24892779122496057347515050710073813084598272.2 |
x18 - 3x17 + 156x16 - 264x15 + 12207x14 - 15969x13 + 513402x12 - 243291x11 + 11001684x10 - 3913117x9 + 125898486x8 - 44832291x7 + 676780368x6 - 346339797x5 + 2052116871x4 - 843969360x3 + 26131311780x2 - 33061226361x + 52082479009 |
\( -\,2^{12}\cdot 3^{31}\cdot 7^{14}\cdot 29^{9} \) |
$S_3 \times C_6$ (as 18T6) |
$[6, 6, 504, 7560]$
(GRH)
|
| 18.0.45356173679730341731994070939714799306801152.1 |
x18 + 381x16 - 6x15 + 54000x14 - 708x13 + 3360784x12 - 129816x11 + 88101033x10 - 4593018x9 + 1454420187x8 + 107838672x7 + 15665949557x6 + 2149578306x5 + 112232882907x4 + 28913721202x3 + 534053961429x2 + 154616908968x + 1160832069377 |
\( -\,2^{18}\cdot 3^{24}\cdot 7^{9}\cdot 19^{15} \) |
$C_6 \times C_3$ (as 18T2) |
$[2, 2, 2, 2, 2, 2, 28, 94276]$
(GRH)
|
| 18.0.48163618447522673224353606318670413146877952.1 |
x18 - 7x17 + 228x16 - 1298x15 + 23619x14 - 113727x13 + 1489716x12 - 6163867x11 + 63312072x10 - 224224367x9 + 1870301948x8 - 5538379279x7 + 38018012120x6 - 89558691519x5 + 506133264109x4 - 856272430360x3 + 3940350373970x2 - 3662150838941x + 13377444091051 |
\( -\,2^{12}\cdot 37^{14}\cdot 103^{9} \) |
$S_3 \times C_6$ (as 18T6) |
$[2, 2, 2, 2, 2, 208, 65520]$
(GRH)
|
| 18.0.59271764018320090686642332486201856000000000.1 |
x18 + 570x16 + 98325x14 + 6783000x12 + 227430000x10 + 4020637500x8 + 38175750000x6 + 188086640625x4 + 434046093750x2 + 361705078125 |
\( -\,2^{18}\cdot 3^{27}\cdot 5^{9}\cdot 19^{15} \) |
$C_6 \times C_3$ (as 18T2) |
$[2, 2, 2, 2, 2, 2, 4, 152, 7448]$
(GRH)
|
| 18.0.91730128303217099071904424489633811022225631.8 |
x18 - 3x17 - 114x16 + 116x15 + 6198x14 + 3654x13 - 177376x12 - 357180x11 + 2726625x10 + 9507061x9 - 18115494x8 - 124465920x7 - 75971136x6 + 717479952x5 + 2450615328x4 + 4627285632x3 + 6736075776x2 + 6649528320x + 3470262272 |
\( -\,3^{24}\cdot 7^{12}\cdot 31^{15} \) |
$C_6 \times C_3$ (as 18T2) |
$[3, 3, 114, 265734]$
(GRH)
|
| 18.0.223001056753368049126899632782755242066866176.1 |
x18 - 3x17 + 210x16 - 372x15 + 20739x14 - 26121x13 + 1092552x12 - 574347x11 + 29917974x10 - 10748977x9 + 437841852x8 - 161530719x7 + 3126531786x6 - 1511623617x5 + 11832099909x4 - 4634433048x3 + 116703097728x2 - 137278953357x + 266589164359 |
\( -\,2^{12}\cdot 3^{31}\cdot 7^{14}\cdot 37^{9} \) |
$S_3 \times C_6$ (as 18T6) |
$[3, 6, 6, 2745576]$
(GRH)
|
| 18.0.242358528402273672667539881228774768857841664.1 |
x18 - 3x17 + 136x16 - 298x15 + 9007x14 - 12805x13 + 365092x12 - 240073x11 + 9966370x10 - 9139x9 + 196884574x8 + 56268523x7 + 2871719318x6 + 317441289x5 + 30612761917x4 - 6634420134x3 + 212309051196x2 - 1789405059x + 706194494839 |
\( -\,2^{18}\cdot 3^{9}\cdot 7^{15}\cdot 11^{9}\cdot 127^{6} \) |
$S_3 \times C_6$ (as 18T6) |
$[2, 2, 2, 6, 7657902]$
(GRH)
|
| 18.0.252684888709680386611475206914860544000000000.3 |
x18 - 3x17 - 90x16 + 552x15 + 2088x14 - 27972x13 + 69750x12 + 183762x11 - 1217997x10 + 174591x9 + 18161604x8 - 86162778x7 + 256504212x6 - 660915288x5 + 1700179632x4 - 3807067392x3 + 6631652736x2 - 7430247936x + 4958060544 |
\( -\,2^{18}\cdot 3^{31}\cdot 5^{9}\cdot 19^{14} \) |
$S_3 \times C_6$ (as 18T6) |
$[6, 6, 5198514]$
(GRH)
|
| 18.0.287465843806740094425446907511025310072188928.1 |
x18 - 3x17 + 51x16 - 30x15 + 1581x14 - 3471x13 + 72951x12 - 287883x11 + 2446248x10 - 9084590x9 + 51165147x8 - 163367103x7 + 688224225x6 - 1766926269x5 + 5595461043x4 - 10346104119x3 + 23602542069x2 - 24485234526x + 36321165287 |
\( -\,2^{12}\cdot 3^{30}\cdot 7^{14}\cdot 43^{9} \) |
$S_3 \times C_6$ (as 18T6) |
$[6, 27232686]$
(GRH)
|
| 18.0.561753924246716084864628955145607304138272768.1 |
x18 - 3x17 + 237x16 - 426x15 + 25869x14 - 32223x13 + 1500495x12 - 812343x11 + 45514758x10 - 16485100x9 + 738641697x8 - 274927533x7 + 5911054881x6 - 2813326287x5 + 24611916219x4 - 9490822527x3 + 224587222647x2 - 254465350584x + 542046171673 |
\( -\,2^{12}\cdot 3^{31}\cdot 7^{14}\cdot 41^{9} \) |
$S_3 \times C_6$ (as 18T6) |
$[6, 72, 772632]$
(GRH)
|
| 18.0.696095344015988004005130387702332687426711552.1 |
x18 - 8x17 + 121x16 - 218x15 + 5594x14 - 2840x13 + 393586x12 - 1015636x11 + 21825209x10 - 34844136x9 + 556579681x8 + 428932198x7 + 11617030252x6 + 14640502408x5 + 184580325172x4 + 186897927432x3 + 1285667140736x2 + 681176924480x + 5260791417344 |
\( -\,2^{12}\cdot 7^{15}\cdot 11^{9}\cdot 19^{15} \) |
$S_3 \times C_6$ (as 18T6) |
$[2, 2, 2, 56, 1865136]$
(GRH)
|
| 18.0.863907756858622745144456333032042876658884599.1 |
x18 - 75x16 - 54x15 + 3114x14 - 5400x13 - 55742x12 + 206604x11 + 583197x10 - 4183416x9 + 21698505x8 - 78893766x7 + 105153016x6 + 658281600x5 - 1952795136x4 + 1597948416x3 - 4097894400x2 - 27902361600x + 109314048000 |
\( -\,3^{27}\cdot 13^{15}\cdot 19^{12} \) |
$C_6 \times C_3$ (as 18T2) |
$[2, 2, 2, 2, 34539492]$
(GRH)
|
| 18.0.1690518576584469820319183508027997709797486592.1 |
x18 - 5x17 + 62x16 - 258x15 + 2823x14 - 9509x13 + 90154x12 - 246181x11 + 2230268x10 - 4683867x9 + 41593164x8 - 66097021x7 + 582912192x6 - 640807131x5 + 5832541787x4 - 3773174596x3 + 37943392200x2 - 8404855443x + 122860198521 |
\( -\,2^{12}\cdot 47^{9}\cdot 79^{14} \) |
$S_3 \times C_6$ (as 18T6) |
$[15, 30, 566370]$
(GRH)
|
| 18.0.1740244769080179953822298827108004668139896832.3 |
x18 - 3x17 - 108x16 + 600x15 + 3168x14 - 32412x13 + 37830x12 + 431202x11 - 1661769x10 - 248865x9 + 15726006x8 - 46463802x7 + 69765816x6 - 92066016x5 + 236050848x4 - 606480096x3 + 985387392x2 - 911283456x + 415009792 |
\( -\,2^{18}\cdot 3^{30}\cdot 7^{9}\cdot 19^{14} \) |
$S_3 \times C_6$ (as 18T6) |
$[2, 196072590]$
(GRH)
|
| 18.0.2861629121862889270656120891466827264000000000.3 |
x18 - 7x17 - 32x16 + 408x15 - 48x14 - 10860x13 + 35022x12 + 55770x11 - 448329x10 - 67901x9 + 6180610x8 - 19725330x7 + 27806472x6 - 45713808x5 + 298949568x4 - 1193707296x3 + 2792992512x2 - 3598002432x + 2600310784 |
\( -\,2^{18}\cdot 3^{9}\cdot 5^{9}\cdot 127^{14} \) |
$S_3 \times C_6$ (as 18T6) |
$[2, 2, 10, 22386910]$
(GRH)
|
| 18.0.3251700921275639876819745944740786500431511552.1 |
x18 + 516x16 + 91332x14 + 7580040x12 + 336547584x10 + 8434990080x8 + 119555334144x6 + 914455166976x4 + 3376449847296x2 + 4501933129728 |
\( -\,2^{27}\cdot 3^{27}\cdot 43^{15} \) |
$C_6 \times C_3$ (as 18T2) |
$[2, 2, 146, 198268]$
(GRH)
|
| 18.0.6765429537581484920649996381709729642447896576.1 |
x18 + 468x16 + 91260x14 + 9596496x12 + 588128112x10 + 21172612032x8 + 428157265536x6 + 4337177495040x4 + 16914992230656x2 + 13993003321856 |
\( -\,2^{27}\cdot 3^{44}\cdot 13^{15} \) |
$C_{18}$ (as 18T1) |
$[3, 59698674]$
(GRH)
|
| 18.0.6765429537581484920649996381709729642447896576.2 |
x18 + 468x16 + 91260x14 + 9596496x12 + 588128112x10 + 21172612032x8 + 428157265536x6 + 4337177495040x4 + 16914992230656x2 + 18296013072896 |
\( -\,2^{27}\cdot 3^{44}\cdot 13^{15} \) |
$C_{18}$ (as 18T1) |
$[3, 35551278]$
(GRH)
|
| 18.0.7181200022505608756129304837174962688000000000.1 |
x18 + 630x16 + 165375x14 + 23409750x12 + 1931304375x10 + 93593981250x8 + 2547836156250x6 + 34743220312500x4 + 182401906640625x2 + 2751369140625 |
\( -\,2^{18}\cdot 3^{45}\cdot 5^{9}\cdot 7^{15} \) |
$C_{18}$ (as 18T1) |
$[2, 2, 117953574]$
(GRH)
|
| 18.0.7181200022505608756129304837174962688000000000.2 |
x18 + 630x16 + 165375x14 + 23409750x12 + 1931304375x10 + 93593981250x8 + 2547836156250x6 + 34743220312500x4 + 182401906640625x2 + 209676837890625 |
\( -\,2^{18}\cdot 3^{45}\cdot 5^{9}\cdot 7^{15} \) |
$C_{18}$ (as 18T1) |
$[2, 2, 171585186]$
(GRH)
|
| 18.0.16373578698382653365249859609237042549755215872.1 |
x18 + 285x16 - 76x15 + 44460x14 + 59052x13 + 3094283x12 + 1799718x11 + 36134124x10 + 100728424x9 + 1560486036x8 - 2931191484x7 + 21949850871x6 + 3554059440x5 + 270199015086x4 - 1052376262422x3 + 6005339466180x2 - 10915804281390x + 18869246125489 |
\( -\,2^{18}\cdot 3^{24}\cdot 7^{9}\cdot 19^{17} \) |
$C_{18}$ (as 18T1) |
$[2, 2, 4, 9195132]$
(GRH)
|
| 18.0.16373578698382653365249859609237042549755215872.2 |
x18 + 285x16 - 76x15 + 44460x14 + 3648x13 + 3097703x12 - 1431156x11 + 33094599x10 - 68927858x9 + 1621667955x8 + 2435565198x7 + 21610704006x6 + 17871018366x5 + 337785531834x4 + 994931059476x3 + 5274173007969x2 + 9476448749994x + 18942165498853 |
\( -\,2^{18}\cdot 3^{24}\cdot 7^{9}\cdot 19^{17} \) |
$C_{18}$ (as 18T1) |
$[2, 2, 2, 2, 2, 2, 2, 2, 4, 418188]$
(GRH)
|
| 18.0.17304111519831580155910725615927954423788077056.1 |
x18 + 444x16 + 78588x14 + 7202864x12 + 374901168x10 + 11442434112x8 + 203442083456x6 + 2004094947840x4 + 9552891988224x2 + 14745141983744 |
\( -\,2^{27}\cdot 3^{24}\cdot 37^{17} \) |
$C_{18}$ (as 18T1) |
$[3, 72954210]$
(GRH)
|
| 18.0.20296288612744454761949989145129188927343689728.1 |
x18 + 468x16 + 91260x14 + 9596496x12 + 588128112x10 + 21172612032x8 + 428157265536x6 + 4337177495040x4 + 16914992230656x2 + 3422001643008 |
\( -\,2^{27}\cdot 3^{45}\cdot 13^{15} \) |
$C_{18}$ (as 18T1) |
$[2, 212388954]$
(GRH)
|
| 18.0.20296288612744454761949989145129188927343689728.2 |
x18 + 468x16 + 91260x14 + 9596496x12 + 588128112x10 + 21172612032x8 + 428157265536x6 + 4337177495040x4 + 16914992230656x2 + 7725011394048 |
\( -\,2^{27}\cdot 3^{45}\cdot 13^{15} \) |
$C_{18}$ (as 18T1) |
$[2, 77852274]$
(GRH)
|
| 18.0.21005238210476463669563930923405113491534905344.2 |
x18 - 30x16 - 456x15 + 2034x14 + 2706x13 - 7532x12 - 1038168x11 + 2658099x10 + 19740598x9 + 216555534x8 + 37355694x7 + 4501586641x6 + 13683356496x5 + 109092265428x4 - 82064768620x3 + 347083985700x2 - 148747023000x + 250641775000 |
\( -\,2^{18}\cdot 3^{27}\cdot 7^{15}\cdot 19^{12} \) |
$C_6 \times C_3$ (as 18T2) |
$[2, 6, 36, 435708]$
(GRH)
|
| 18.0.21005238210476463669563930923405113491534905344.4 |
x18 - 30x16 - 426x15 + 3546x14 - 5478x13 + 112168x12 - 653382x11 + 5940777x10 - 27557386x9 + 54773046x8 - 196704744x7 + 3951456340x6 + 787839768x5 + 53542445592x4 + 25422376576x3 + 441096494976x2 + 121672015488x + 2149375249792 |
\( -\,2^{18}\cdot 3^{27}\cdot 7^{15}\cdot 19^{12} \) |
$C_6 \times C_3$ (as 18T2) |
$[2, 2, 2, 2, 2, 2, 2, 2, 4, 12, 36, 252]$
(GRH)
|
| 18.0.21005238210476463669563930923405113491534905344.6 |
x18 - 279x16 - 114x15 + 36072x14 + 30096x13 - 2613396x12 - 3430944x11 + 105501465x10 + 204598042x9 - 1724576913x8 - 5860535940x7 - 22592017839x6 + 28166415822x5 + 896870114343x4 + 1713810637074x3 + 8571032362377x2 + 6221781695196x + 13691196826273 |
\( -\,2^{18}\cdot 3^{27}\cdot 7^{15}\cdot 19^{12} \) |
$C_6 \times C_3$ (as 18T2) |
$[2, 2, 2, 6, 36, 65268]$
(GRH)
|
| 18.0.21005238210476463669563930923405113491534905344.7 |
x18 - 6x17 - 123x16 + 214x15 + 14436x14 + 23100x13 - 870492x12 - 5139900x11 + 25244937x10 + 362433664x9 + 788783403x8 - 10162090644x7 - 78907957919x6 - 102611054952x5 + 1558542590511x4 + 11074200636090x3 + 37880347635009x2 + 68911053919794x + 63247295717733 |
\( -\,2^{18}\cdot 3^{27}\cdot 7^{15}\cdot 19^{12} \) |
$C_6 \times C_3$ (as 18T2) |
$[2, 2, 6, 6, 6, 6, 12, 4788]$
(GRH)
|
| 18.0.21005238210476463669563930923405113491534905344.10 |
x18 - 6x17 + 105x16 - 470x15 + 5088x14 - 19992x13 + 148828x12 - 475356x11 + 2514777x10 - 6643036x9 + 25989579x8 - 49796760x7 + 77021785x6 + 63019572x5 + 3867087x4 - 2732121798x3 + 16365722709x2 - 30542807610x + 27422121601 |
\( -\,2^{18}\cdot 3^{27}\cdot 7^{15}\cdot 19^{12} \) |
$C_6 \times C_3$ (as 18T2) |
$[2, 2, 2, 2, 4, 12, 180, 2340]$
(GRH)
|
| 18.0.22838497091409859087791143712903439974156730368.1 |
x18 + 348x16 - 6x15 + 53571x14 - 642x13 + 4749545x12 + 9708x11 + 265060431x10 + 4893800x9 + 9583959330x8 + 337218438x7 + 223808102424x6 + 12508745586x5 + 3292755135573x4 + 292609182286x3 + 28764421042719x2 + 3142777574502x + 114567254733219 |
\( -\,2^{27}\cdot 3^{24}\cdot 61^{15} \) |
$C_6 \times C_3$ (as 18T2) |
$[6, 114, 759810]$
(GRH)
|
| 18.0.23267717097701665308512958392073692044388990976.1 |
x18 + 75x16 - 76x15 + 6471x14 + 2052x13 + 413371x12 + 107388x11 + 20079240x10 + 13599706x9 + 775572138x8 + 779478990x7 + 21570475153x6 + 26380180944x5 + 434832004497x4 + 584216479326x3 + 5532391423872x2 + 5208110998344x + 29491760233189 |
\( -\,2^{18}\cdot 3^{27}\cdot 7^{9}\cdot 19^{16} \) |
$C_{18}$ (as 18T1) |
$[2, 2, 2, 2, 2, 2, 2, 2, 12, 296172]$
(GRH)
|
| 18.0.24452875343497320288961601897227861400802734375.1 |
x18 - 5x17 + 256x16 - 1254x15 + 23031x14 - 128645x13 + 995929x12 - 6792838x11 + 48781375x10 - 102865150x9 + 3289661823x8 + 8469771305x7 + 124438453933x6 + 413878987297x5 + 2872304692608x4 + 7963413486647x3 + 34868873043404x2 + 64347661656908x + 153482306734184 |
\( -\,5^{9}\cdot 7^{15}\cdot 13^{15}\cdot 61^{6} \) |
$S_3 \times C_6$ (as 18T6) |
$[2, 2, 2, 2, 10857210]$
(GRH)
|
| 18.0.36448868215394073947142909926060511831115554963.5 |
x18 - 1332x15 + 390942x12 + 37068931x9 - 251077338x6 + 53409637566x3 + 8020417344913 |
\( -\,3^{45}\cdot 37^{16} \) |
$C_{18}$ (as 18T1) |
$[333, 925407]$
(GRH)
|
| 18.0.58239839403585271065831634525715076154762985472.1 |
x18 + 474x16 + 59013x14 + 2045784x12 + 19771488x10 + 82905444x8 + 170304408x6 + 173056689x4 + 79872318x2 + 13312053 |
\( -\,2^{18}\cdot 3^{27}\cdot 79^{15} \) |
$C_6 \times C_3$ (as 18T2) |
$[2, 2, 2, 6, 756, 14364]$
(GRH)
|
| 18.0.74461665313712352487171933214411650949175312384.4 |
x18 + 342x16 + 36423x14 + 1398894x12 + 25743195x10 + 255741786x8 + 1406615562x6 + 4024770228x4 + 4661278569x2 + 5640625 |
\( -\,2^{18}\cdot 3^{44}\cdot 19^{16} \) |
$C_{18}$ (as 18T1) |
$[161970201]$
(GRH)
|
| 18.0.75604221004961235317502546825450910936845778944.1 |
x18 - 3x17 + 21x16 - 390x15 + 1605x14 + 2517x13 + 192669x12 + 878361x11 + 8448546x10 + 34317110x9 + 215974023x8 + 759000693x7 + 3570618183x6 + 10073564715x5 + 35167390251x4 + 70641640257x3 + 175409363589x2 + 195259486710x + 313934054923 |
\( -\,2^{18}\cdot 3^{31}\cdot 13^{14}\cdot 17^{9} \) |
$S_3 \times C_6$ (as 18T6) |
$[3, 78, 688740]$
(GRH)
|
| 18.0.79794198402451666358803683478559912448000000000.1 |
x18 - 6x17 - 138x16 + 738x15 + 7908x14 - 39702x13 - 151035x12 + 1155498x11 + 518775x10 - 10423648x9 + 25952187x8 - 144337500x7 + 914131653x6 - 2002698378x5 + 5393042586x4 - 14614241886x3 + 37957823343x2 - 8673549336x + 134550076329 |
\( -\,2^{18}\cdot 3^{30}\cdot 5^{9}\cdot 31^{14} \) |
$S_3 \times C_6$ (as 18T6) |
$[2, 6, 6, 18, 181818]$
(GRH)
|
| 18.0.93291491561617523611597175490188150404729012224.1 |
x18 + 384x16 - 6x15 + 63651x14 - 714x13 + 5927501x12 - 8580x11 + 340172631x10 + 4558136x9 + 12479698206x8 + 413166918x7 + 293715212040x6 + 16600209018x5 + 4343847853269x4 + 394357188862x3 + 38060351025159x2 + 4181456863998x + 151794199375503 |
\( -\,2^{27}\cdot 3^{24}\cdot 67^{15} \) |
$C_6 \times C_3$ (as 18T2) |
$[42, 42, 467754]$
(GRH)
|
| 18.0.94186295366043352700011964780992402944000000000.3 |
x18 - x17 - 82x16 + 38x15 + 2995x14 - 605x13 - 44338x12 + 38123x11 + 492348x10 + 39697x9 - 905428x8 - 6535669x7 + 37954104x6 + 3616657x5 + 155971711x4 - 289152616x3 + 1085934684x2 + 874624481x + 4397661349 |
\( -\,2^{18}\cdot 3^{9}\cdot 5^{9}\cdot 163^{14} \) |
$S_3 \times C_6$ (as 18T6) |
$[2, 2, 4, 10370204]$
(GRH)
|
| 18.0.105377540665610698021122402053144975812532895744.1 |
x18 - 6x17 + 60x16 - 300x15 + 5322x14 + 5892x13 + 180798x12 + 131052x11 + 971853x10 - 2916182x9 + 6632250x8 - 5868096x7 + 55674768x6 + 50331552x5 + 683861808x4 + 2219455920x3 + 5415393588x2 + 6016806408x + 4180912696 |
\( -\,2^{30}\cdot 3^{31}\cdot 7^{9}\cdot 13^{14} \) |
$S_3 \times C_6$ (as 18T6) |
$[2, 2, 2, 2, 2, 2, 2, 24, 58536]$
(GRH)
|
| 18.0.105377540665610698021122402053144975812532895744.2 |
x18 - 6x17 + 60x16 - 66x15 + 4776x14 - 22110x13 + 162195x12 + 142518x11 + 1383927x10 - 2492512x9 + 12321687x8 + 4485624x7 + 34894203x6 - 114235734x5 + 266849940x4 + 228252030x3 + 2920222299x2 - 6212683488x + 8052186349 |
\( -\,2^{30}\cdot 3^{31}\cdot 7^{9}\cdot 13^{14} \) |
$S_3 \times C_6$ (as 18T6) |
$[2, 2, 2, 6, 3846258]$
(GRH)
|