Learn more about

Further refine search

Results (displaying matches 1-50 of 201) Next

Label Polynomial Discriminant Galois group Class group
18.0.549602237265236146200328835310499852899314559.5 x18 + 120x16 - 100x15 + 5202x14 - 6276x13 + 216480x12 - 393084x11 + 3932949x10 - 12808812x9 + 44404560x8 - 291814320x7 + 1659031088x6 + 12409534080x5 + 110919615744x4 + 424503642112x3 + 1332058521600x2 + 2249313484800x + 2772434944000 \( -\,3^{27}\cdot 7^{15}\cdot 19^{15} \) $C_6 \times C_3$ (as 18T2) $[2, 2, 2, 2, 2, 277909656]$ (GRH)
18.0.10293947901026815839844463877644638832922587136.1 x18 - x17 + 191x16 + 237x15 + 24585x14 + 119723x13 + 2169003x12 + 13020561x11 + 116404855x10 + 597868077x9 + 3990653485x8 + 18385432151x7 + 99487490867x6 + 368692180073x5 + 1482883758697x4 + 3744823323947x3 + 10112290341964x2 + 13574001819584x + 22784958920704 \( -\,2^{12}\cdot 3^{9}\cdot 7^{15}\cdot 11^{6}\cdot 19^{15} \) $S_3 \times C_6$ (as 18T6) $[2, 2, 2, 6, 88705224]$ (GRH)
18.0.21397106810613552737877882027518870016000000000.1 x18 + 570x16 + 123975x14 + 13922250x12 + 890161875x10 + 32905743750x8 + 667386281250x6 + 6305250937500x4 + 16368106640625x2 + 121236328125 \( -\,2^{18}\cdot 3^{27}\cdot 5^{9}\cdot 19^{17} \) $C_{18}$ (as 18T1) $[2, 2, 682763844]$ (GRH)
18.0.21397106810613552737877882027518870016000000000.2 x18 + 570x16 + 123975x14 + 13494750x12 + 809364375x10 + 27846281250x8 + 553885031250x6 + 6230705625000x4 + 36516983203125x2 + 86016673828125 \( -\,2^{18}\cdot 3^{27}\cdot 5^{9}\cdot 19^{17} \) $C_{18}$ (as 18T1) $[2, 2, 618423708]$ (GRH)
18.0.23267717097701665308512958392073692044388990976.2 x18 + 75x16 - 76x15 + 6471x14 + 409951x12 + 501372x11 + 21240672x10 + 32240074x9 + 787133106x8 + 1165841862x7 + 21242025193x6 + 22617048924x5 + 398164960137x4 + 246611628030x3 + 4852747373220x2 + 345736733040x + 30985776501229 \( -\,2^{18}\cdot 3^{27}\cdot 7^{9}\cdot 19^{16} \) $C_{18}$ (as 18T1) $[2, 2, 12, 55575756]$ (GRH)
18.0.35194614989005626327530535731700788800837489791.4 x18 + 69x16 - 342x15 + 4842x14 - 20664x13 + 299506x12 - 884196x11 + 9112317x10 - 21399912x9 + 191614905x8 - 98215254x7 + 3750331288x6 - 3908734704x5 + 65580672912x4 - 101131530336x3 + 545791014144x2 - 452406256128x + 1509470846976 \( -\,3^{27}\cdot 7^{12}\cdot 37^{15} \) $C_6 \times C_3$ (as 18T2) $[6, 126, 4356072]$ (GRH)
18.0.134073374251346122646523762386906440653122306048.1 x18 - 7x17 - 14x16 + 296x15 - 104x14 - 8692x13 + 40510x12 - 31030x11 - 103469x10 - 883965x9 + 10462064x8 - 42389938x7 + 122868164x6 - 348451720x5 + 1353700784x4 - 4306452928x3 + 10681441664x2 - 15402059776x + 14816731136 \( -\,2^{18}\cdot 23^{9}\cdot 127^{14} \) $S_3 \times C_6$ (as 18T6) $[12, 252, 1888488]$ (GRH)
18.0.174641799984367553282969504761435227000000000000.2 x18 - x15 + 59536x12 + 118341x9 + 1171847088x6 - 387420489x3 + 7625597484987 \( -\,2^{12}\cdot 3^{27}\cdot 5^{12}\cdot 73^{12} \) $S_3 \times C_3$ (as 18T3) $[3, 3, 9, 9, 9, 9, 54, 378]$ (GRH)
18.0.195798652181541517842155358339748719235115999787.2 x18 - 9x17 + 45x16 - 156x15 + 411x14 - 861x13 - 521793x12 + 3137505x11 - 10201200x10 + 22236314x9 - 35056719x8 + 41336523x7 + 68414239629x6 - 205328532297x5 + 410694739059x4 - 479154240201x3 + 319438195035x2 - 114085331286x + 17746624531 \( -\,3^{31}\cdot 7^{12}\cdot 73^{12} \) $S_3 \times C_3$ (as 18T3) $[3, 3, 3, 3, 9, 684, 4788]$ (GRH)
18.0.219464566825677533664660221787658595963084794983.4 x18 - 3x17 - 126x16 - 550x15 + 9855x14 + 58947x13 + 2403572x12 + 4265028x11 + 133354239x10 + 69650435x9 + 3774087570x8 - 459373590x7 + 64122556561x6 - 16181516019x5 + 751115946456x4 + 45178635864x3 + 5972918763024x2 - 618217616304x + 22504454258688 \( -\,3^{24}\cdot 13^{15}\cdot 19^{15} \) $C_6 \times C_3$ (as 18T2) $[21, 42, 378, 11718]$ (GRH)
18.0.330007904499468387933830810627328948148827793503.1 x18 - 218x15 + 8829x14 + 1962x13 + 3052x12 - 2601612x11 + 4236939x10 - 23442412x9 + 250790688x8 - 356748498x7 + 5184150199x6 - 18049683870x5 + 61464190068x4 - 380206748136x3 + 665349107904x2 + 398639222784x + 381578493952 \( -\,3^{27}\cdot 109^{17} \) $C_{18}$ (as 18T1) $[3, 593413236]$ (GRH)
18.0.420043524447982694779997090972698756380285468672.2 x18 - 6x17 + 345x16 - 1778x15 + 50028x14 - 219576x13 + 3899592x12 - 14341668x11 + 171878073x10 - 515196144x9 + 4026740871x8 - 9350526024x7 + 37334377373x6 - 58803238512x5 - 60150628077x4 + 133588777454x3 + 167812083477x2 - 218068968786x + 185027482261 \( -\,2^{18}\cdot 3^{27}\cdot 7^{12}\cdot 19^{15} \) $C_6 \times C_3$ (as 18T2) $[2, 2, 2, 2, 52, 1217892]$ (GRH)
18.0.420043524447982694779997090972698756380285468672.4 x18 + 45x16 - 210x15 + 3024x14 + 10080x13 - 53472x12 - 1285200x11 - 5355135x10 + 39238850x9 + 452260827x8 + 590724540x7 - 9047417835x6 - 42861762090x5 + 7539888843x4 + 615461531370x3 + 2224622720133x2 + 3640164079860x + 2551664661337 \( -\,2^{18}\cdot 3^{27}\cdot 7^{12}\cdot 19^{15} \) $C_6 \times C_3$ (as 18T2) $[2, 2, 2, 2, 28, 2261532]$ (GRH)
18.0.739970329848199945276026357888092034566758313984.1 x18 - 2x17 - 87x16 + 1202x15 - 2841x14 - 80238x13 + 1287658x12 - 11262660x11 + 70706700x10 - 344420830x9 + 1342940679x8 - 4240439604x7 + 10825160241x6 - 22066150836x5 + 35004517519x4 - 41292548918x3 + 33626242626x2 - 16638384612x + 3731618953 \( -\,2^{12}\cdot 17^{9}\cdot 163^{15} \) $S_3 \times C_3$ (as 18T3) $[26, 1612, 30628]$ (GRH)
18.0.957725673320066238974132504381157911244615234375.2 x18 - x17 - 282x16 + 42x15 + 30077x14 + 18035x13 - 1363905x12 - 1533003x11 + 25199154x10 + 38273266x9 - 19380689x8 + 151200629x7 + 2370420196x6 + 1825666152x5 + 11737837080x4 + 16619785184x3 + 87416317952x2 - 2937968128x + 305535379456 \( -\,3^{9}\cdot 5^{9}\cdot 7^{14}\cdot 67^{14} \) $S_3 \times C_6$ (as 18T6) $[2, 2, 2, 4, 77184492]$ (GRH)
18.0.1371953532870850784692114650282846158453984722944.2 x18 - 3x17 - 36x16 + 408x15 + 576x14 - 18684x13 + 145350x12 - 556254x11 + 2697543x10 - 14553153x9 + 105217326x8 - 548111610x7 + 2645917704x6 - 9783568800x5 + 34090131744x4 - 89371535328x3 + 211735347840x2 - 307300490496x + 380974814208 \( -\,2^{18}\cdot 3^{31}\cdot 13^{9}\cdot 19^{14} \) $S_3 \times C_6$ (as 18T6) $[2, 6, 724765860]$ (GRH)
18.0.2395667890070146411269283915935172526863463952384.2 x18 - 6x17 - 159x16 - 1410x15 + 7527x14 + 280182x13 + 3597450x12 + 30551556x11 + 196786164x10 + 1007188198x9 + 4180850511x8 + 14164032300x7 + 38939538201x6 + 85555837932x5 + 145837576599x4 + 183224962614x3 + 156763071546x2 + 80259221724x + 18360337249 \( -\,2^{12}\cdot 3^{31}\cdot 7^{9}\cdot 31^{15} \) $S_3 \times C_3$ (as 18T3) $[3, 1638, 219492]$ (GRH)
18.0.2501730511640249522911904558507505938447107600063.6 x18 - x17 + 20x16 - 58x15 + 4523x14 - 44727x13 + 156314x12 + 565724x11 + 5297847x10 - 62092191x9 - 87377712x8 + 2705060950x7 - 3711440771x6 - 44238428233x5 + 171707544098x4 + 136367346344x3 - 1463520329344x2 + 355897168384x + 11080414060544 \( -\,19^{17}\cdot 37^{17} \) $C_{18}$ (as 18T1) $[7801759098]$ (GRH)
18.0.3003200821410347323073992859276234352128000000000.1 x18 - 4x17 - 77x16 - 186x15 + 6112x14 + 26100x13 - 79910x12 - 856236x11 - 1687355x10 - 3787964x9 + 93538987x8 + 176088726x7 + 8509113946x6 - 42706675732x5 + 161608733256x4 + 230802504368x3 + 6364008129664x2 - 7002971574528x + 29398869968896 \( -\,2^{18}\cdot 5^{9}\cdot 7^{15}\cdot 13^{15}\cdot 17^{6} \) $S_3 \times C_6$ (as 18T6) $[2, 6, 472686840]$ (GRH)
18.0.3372451021135065952308015612910739392504066879488.1 x18 - 46827x12 + 3634057251x6 + 747377296875 \( -\,2^{12}\cdot 3^{37}\cdot 11^{12}\cdot 17^{12} \) $C_3^2 : C_2$ (as 18T4) $[2, 2, 2, 6, 6, 6, 12, 12, 72, 72]$ (GRH)
18.0.5336108477246594974427370451986506423645848731648.7 x18 + 273x16 - 168x15 + 38934x14 - 4704x13 + 3256078x12 - 740880x11 + 177123093x10 + 94202304x9 + 8415651069x8 + 10024559160x7 + 241142568884x6 + 271774244448x5 + 6941687396868x4 + 23218361290432x3 + 193558495474176x2 + 420721169799168x + 1331820844863488 \( -\,2^{18}\cdot 3^{24}\cdot 7^{15}\cdot 19^{15} \) $C_6 \times C_3$ (as 18T2) $[2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 28, 25284]$ (GRH)
18.0.5336108477246594974427370451986506423645848731648.9 x18 + 57x16 - 114x15 + 25992x14 + 17328x13 + 1534972x12 - 1975392x11 + 167764281x10 + 223754298x9 + 17029175391x8 + 4324050780x7 + 341322297569x6 - 127425006738x5 + 58784088299895x4 + 125502023684818x3 + 3925005531309753x2 + 3316967769886236x + 43904083722291521 \( -\,2^{18}\cdot 3^{24}\cdot 7^{15}\cdot 19^{15} \) $C_6 \times C_3$ (as 18T2) $[2, 2, 2, 2, 28, 4299204]$ (GRH)
18.0.18777800570904586987097565808700098548206552543232.1 x18 - 9x17 - 132x16 + 742x15 + 12147x14 - 13221x13 - 634314x12 - 1579305x11 + 17018340x10 + 109842349x9 - 17013828x8 - 2482374477x7 - 9152309280x6 + 6179192277x5 + 169228552005x4 + 703629239684x3 + 1596953609076x2 + 2096104977033x + 1343941011449 \( -\,2^{12}\cdot 3^{24}\cdot 23^{9}\cdot 37^{14} \) $S_3 \times C_6$ (as 18T6) $[3, 3, 3, 3, 14783202]$ (GRH)
18.0.46526487881757546143902493465169189274448943906816.1 x18 - 33x16 - 518x15 + 7551x14 + 57276x13 + 279460x12 - 2117214x11 + 6831186x10 + 177967040x9 + 2070194571x8 + 6463629012x7 + 23205936379x6 + 142282696212x5 + 2468568430875x4 + 16826397242406x3 + 81392406986196x2 + 210401935775676x + 360860185926073 \( -\,2^{24}\cdot 3^{27}\cdot 7^{9}\cdot 37^{14} \) $S_3 \times C_6$ (as 18T6) $[3, 6, 6, 12, 1076556]$ (GRH)
18.0.48805253563272524881557588987780226277016000000000.3 x18 - 3x17 - 354x16 + 2172x15 + 44394x14 - 428718x13 - 1669332x12 + 31785648x11 - 47149131x10 - 927212375x9 + 4765541070x8 + 972777468x7 - 70540733496x6 + 158074945248x5 + 512148044928x4 - 3757461785088x3 + 9971179180032x2 - 13774599094272x + 8983456251904 \( -\,2^{12}\cdot 3^{31}\cdot 5^{9}\cdot 61^{14} \) $S_3 \times C_6$ (as 18T6) $[3, 3, 18, 18436230]$ (GRH)
18.0.64777118927098033917816196726443715275282899009536.1 x18 - x17 - 46x16 + 6x15 + 1875x14 - 149x13 + 3114x12 + 58411x11 + 742416x10 + 1083121x9 + 13778320x8 - 7527429x7 + 296925420x6 - 102044671x5 + 3365343059x4 - 1720750208x3 + 25382044532x2 + 3807287761x + 105185281361 \( -\,2^{18}\cdot 31^{9}\cdot 163^{14} \) $S_3 \times C_6$ (as 18T6) $[300, 9960300]$ (GRH)
18.0.65814407127188227791161915140602399158516689403904.2 x18 - 4x17 - 256x16 + 1138x15 + 24231x14 - 118856x13 - 825357x12 + 4506790x11 + 14933513x10 - 100422380x9 + 48529363x8 + 706102334x7 + 3550027525x6 - 19415573440x5 + 48699532177x4 + 4438727658x3 + 333518260810x2 - 1171630181320x + 3405745481641 \( -\,2^{27}\cdot 3^{9}\cdot 7^{14}\cdot 67^{14} \) $S_3 \times C_6$ (as 18T6) $[2, 2, 2, 6, 6, 6, 42, 27006]$ (GRH)
18.0.72089101682458965160031671674946384142833324130304.1 x18 + 762x16 + 163449x14 + 12079605x12 + 378579888x10 + 5811085152x8 + 45949843584x6 + 184059502848x4 + 339802159104x2 + 226534772736 \( -\,2^{18}\cdot 3^{27}\cdot 127^{15} \) $C_6 \times C_3$ (as 18T2) $[2, 2, 2, 2, 8, 8, 728, 3640]$ (GRH)
18.0.110445965776445517995022588915789180791979915030528.1 x18 - 9x17 + 249x16 - 1210x15 + 46269x14 - 388629x13 + 5761489x12 - 23816085x11 + 231643500x10 - 1868512448x9 + 27515504667x8 - 192359931897x7 + 1114840641631x6 - 3682933439697x5 + 19540700837241x4 - 110436829949061x3 + 710612754783045x2 - 2315082332910126x + 5065118682021109 \( -\,2^{12}\cdot 3^{27}\cdot 13^{9}\cdot 37^{15} \) $S_3 \times C_6$ (as 18T6) $[2, 12, 77388948]$ (GRH)
18.0.114373117921862173420296089417336295857933279821824.2 x18 - 288x16 - 684x15 + 25407x14 + 114912x13 - 134160x12 - 332424x11 + 13658103x10 + 37696646x9 + 4537944x8 + 95193990x7 + 2434990194x6 + 2758880142x5 + 9735437304x4 + 20624060568x3 + 135663898545x2 - 38029861350x + 1084361854375 \( -\,2^{27}\cdot 3^{45}\cdot 19^{16} \) $C_{18}$ (as 18T1) $[7, 409181346]$ (GRH)
18.0.148517229624401636719219621434603498075107117498368.1 x18 + 553x16 + 124978x14 + 14852474x12 + 993573441x10 + 37101053689x8 + 720817500956x6 + 6348478632580x4 + 20090550387600x2 + 692684296192 \( -\,2^{30}\cdot 7^{15}\cdot 79^{15} \) $S_3 \times C_6$ (as 18T6) $[2, 2, 2, 2, 4, 12, 1303020]$ (GRH)
18.0.193098447796943280994699574357059823115776000000000.1 x18 - x17 - 37x16 - 2x15 + 1775x14 - 175x13 + 15397x12 + 63753x11 + 1006988x10 + 1462242x9 + 22067877x8 - 5102579x7 + 468059929x6 - 138548203x5 + 5750426701x4 - 2439482531x3 + 45599080719x2 + 4718555316x + 193437757489 \( -\,2^{18}\cdot 5^{9}\cdot 7^{9}\cdot 163^{14} \) $S_3 \times C_6$ (as 18T6) $[2, 2, 2, 28, 17819172]$ (GRH)
18.0.241947573394594188600060412651445161430839296000000.1 x18 - 6x17 - 75x16 + 322x15 + 4083x14 - 13386x13 - 47197x12 + 222126x11 + 755604x10 - 6314064x9 - 510672x8 + 78891408x7 - 257271072x6 - 49951008x5 + 1777895376x4 - 3995186848x3 + 22818506112x2 + 35231984640x + 27667283968 \( -\,2^{18}\cdot 3^{27}\cdot 5^{6}\cdot 13^{15}\cdot 73^{6} \) $S_3 \times C_6$ (as 18T6) $[2, 663415116]$ (GRH)
18.0.275262807777657994100187725010026740088832000000000.1 x18 - 2x17 - 140x16 - 50x15 + 9349x14 + 23272x13 - 295241x12 - 1389596x11 + 3702763x10 + 37744642x9 + 56319898x8 - 328077626x7 - 1540727786x6 - 146306990x5 + 20797548331x4 + 87252708550x3 + 210708993481x2 + 282909781276x + 245644707669 \( -\,2^{24}\cdot 3^{6}\cdot 5^{9}\cdot 271^{14} \) $S_3 \times C_6$ (as 18T6) $[86, 21244580]$ (GRH)
18.0.275644570682799017504631978444753999120934291206144.1 x18 - 9x17 - 114x16 + 598x15 + 10995x14 - 5745x13 - 553500x12 - 1804737x11 + 14666778x10 + 115321025x9 + 72948210x8 - 2489222517x7 - 11063580650x6 + 4354104129x5 + 234790211235x4 + 1131134296912x3 + 2978310223176x2 + 4545989325489x + 3552952831147 \( -\,2^{12}\cdot 3^{24}\cdot 31^{9}\cdot 37^{14} \) $S_3 \times C_6$ (as 18T6) $[3, 3, 3, 117602388]$ (GRH)
18.0.286545080573078051080746349592284832173804522156032.1 x18 + 123804x12 + 455035104x6 + 421875000000 \( -\,2^{12}\cdot 3^{31}\cdot 7^{12}\cdot 67^{12} \) $S_3 \times C_3$ (as 18T3) $[2, 6, 6, 6, 36, 36, 36, 108]$ (GRH)
18.0.336122542391918780239888468288923486473177906638848.1 x18 - 3x17 - 372x16 + 2220x15 + 48642x14 - 446046x13 - 2086968x12 + 34431120x11 - 33488187x10 - 1049976215x9 + 4500825492x8 + 5096936940x7 - 78281565936x6 + 152818776720x5 + 343019618880x4 - 2247082834368x3 + 4853863902720x2 - 5257925494272x + 2489858275328 \( -\,2^{12}\cdot 3^{30}\cdot 7^{9}\cdot 61^{14} \) $S_3 \times C_6$ (as 18T6) $[6, 1039665942]$ (GRH)
18.0.724363080171793764995208566309796540433577438871552.1 x18 + 684x16 + 182628x14 + 24835584x12 + 1856540160x10 + 76187049984x8 + 1609060073472x6 + 14569818292224x4 + 27472624091136x2 + 163208757248 \( -\,2^{27}\cdot 3^{44}\cdot 19^{17} \) $C_{18}$ (as 18T1) $[2, 2, 2, 2, 2, 2, 2, 36, 781596]$ (GRH)
18.0.724363080171793764995208566309796540433577438871552.3 x18 + 684x16 + 145692x14 + 12701424x12 + 553659696x10 + 13065198912x8 + 168726690432x6 + 1120116736512x4 + 3069202731264x2 + 985095890432 \( -\,2^{27}\cdot 3^{44}\cdot 19^{17} \) $C_{18}$ (as 18T1) $[9, 261743454]$ (GRH)
18.0.724363080171793764995208566309796540433577438871552.4 x18 + 684x16 + 182628x14 + 24322584x12 + 1730990592x10 + 66282292224x8 + 1283370835968x6 + 10319094448128x4 + 17155059351552x2 + 8032970866688 \( -\,2^{27}\cdot 3^{44}\cdot 19^{17} \) $C_{18}$ (as 18T1) $[2, 36, 26617356]$ (GRH)
18.0.724363080171793764995208566309796540433577438871552.5 x18 + 684x16 + 182628x14 + 25307544x12 + 2016760320x10 + 95935104000x8 + 2718287880192x6 + 44181664137216x4 + 376568116936704x2 + 1297774555430912 \( -\,2^{27}\cdot 3^{44}\cdot 19^{17} \) $C_{18}$ (as 18T1) $[2, 36, 36763092]$ (GRH)
18.0.724363080171793764995208566309796540433577438871552.6 x18 + 684x16 + 145692x14 + 10156944x12 + 313986096x10 + 4682204352x8 + 31999796352x6 + 81048287232x4 + 69983771904x2 + 14550451712 \( -\,2^{27}\cdot 3^{44}\cdot 19^{17} \) $C_{18}$ (as 18T1) $[9, 271391526]$ (GRH)
18.0.855957735577256641291889992748058377744964357107712.4 x18 - 306x16 - 708x15 + 40104x14 + 202284x13 - 2674572x12 - 20110392x11 + 86941944x10 + 949735792x9 - 423343152x8 - 19766135520x7 - 18882531552x6 + 193086664128x5 + 780864960960x4 + 3330748799808x3 + 16521840365184x2 + 51445398142656x + 65006631218368 \( -\,2^{12}\cdot 3^{39}\cdot 13^{12}\cdot 19^{12} \) $S_3 \times C_3$ (as 18T3) $[3, 3, 3, 3, 585, 25155]$ (GRH)
18.0.1132586549659813618524246198887307765542862584807424.2 x18 - 8x17 - 206x16 - 6x15 + 17550x14 + 124802x13 + 359127x12 + 659382x11 + 4974933x10 + 36876810x9 + 180850253x8 + 695406524x7 + 2546248545x6 + 7978959520x5 + 22847752382x4 + 51046721698x3 + 110400751965x2 + 153363319298x + 222285198247 \( -\,2^{33}\cdot 3^{9}\cdot 7^{14}\cdot 61^{14} \) $S_3 \times C_6$ (as 18T6) $[6, 18, 108, 137484]$ (GRH)
18.0.1152969742748338361522490256327499776524288000000000.1 x18 + 48x16 - 518x15 + 12087x14 + 43290x13 + 1053253x12 - 49284x11 + 62693295x10 + 334422428x9 + 5992436430x8 + 23739397950x7 + 222938790160x6 + 1003108842378x5 + 11209338881445x4 + 60709569882666x3 + 349997531677587x2 + 954995916305826x + 2359097078790079 \( -\,2^{33}\cdot 3^{27}\cdot 5^{9}\cdot 37^{14} \) $S_3 \times C_6$ (as 18T6) $[6, 6, 258317202]$ (GRH)
18.0.1188137836995213093753756971476827984600856939986944.1 x18 - 6x17 + 427x16 - 108x15 + 75140x14 + 192596x13 + 7791772x12 + 41131796x11 + 324233435x10 + 3688040186x9 + 7170164721x8 + 86405002144x7 + 487968322552x6 - 1781407473888x5 + 19811453012448x4 - 93030379477632x3 + 300717932225024x2 - 470177345986688x + 723973068517952 \( -\,2^{33}\cdot 7^{15}\cdot 79^{15} \) $S_3 \times C_6$ (as 18T6) $[2, 2, 2, 2, 12, 12, 2880360]$ (GRH)
18.0.1908403057576682162285171000138631615439273507946496.2 x18 - 276x16 - 1580x15 + 28422x14 + 355500x13 + 1078822x12 - 9046764x11 + 26855961x10 + 1152845420x9 + 7033272066x8 - 33229098816x7 - 580604160344x6 - 1796953824576x5 + 22616881415904x4 + 273825317586768x3 + 1395378492366564x2 + 3660812605939536x + 4363300165325176 \( -\,2^{33}\cdot 3^{27}\cdot 79^{15} \) $S_3 \times C_6$ (as 18T6) $[2, 2, 2, 2, 4, 12, 3407460]$ (GRH)
18.0.1926335160286020785768280733167128818936151392124928.2 x18 + 798x16 + 242991x14 + 36093274x12 + 2831149587x10 + 119120371902x8 + 2538023959562x6 + 22440538637328x4 + 39871239158709x2 + 18624704126077 \( -\,2^{18}\cdot 3^{24}\cdot 7^{15}\cdot 19^{17} \) $C_{18}$ (as 18T1) $[2, 2, 12, 30537876]$ (GRH)
18.0.1926335160286020785768280733167128818936151392124928.3 x18 + 798x16 + 242991x14 + 38032414x12 + 3369081387x10 + 171403421490x8 + 4744178127122x6 + 59920722735636x4 + 179088217142121x2 + 32131593339013 \( -\,2^{18}\cdot 3^{24}\cdot 7^{15}\cdot 19^{17} \) $C_{18}$ (as 18T1) $[2, 2, 12, 33681324]$ (GRH)
18.0.2173089240515381294985625698929389621300732316614656.1 x18 + 684x16 + 145692x14 + 11366256x12 + 426862512x10 + 8467405632x8 + 88486683264x6 + 444387949056x4 + 829422602496x2 + 188728521216 \( -\,2^{27}\cdot 3^{45}\cdot 19^{17} \) $C_{18}$ (as 18T1) $[2, 791649756]$ (GRH)
Next

Download all search results for