Further refine search
Results (displaying all 12 matches)
| Label | Polynomial | Discriminant | Galois group | Class group |
|---|---|---|---|---|
| 17.1.316912650884297612260512565521.1 | x17 + 4x - 1 | \( 3\cdot 11\cdot 23\cdot 71\cdot 2797\cdot 228733\cdot 7495121\cdot 1226420809 \) | $S_{17}$ (as 17T10) | $[2]$ (GRH) |
| 17.1.312241809013901420595188268597248.1 | x17 + 6x - 2 | \( 2^{16}\cdot 4764431900236532907031070993 \) | $S_{17}$ (as 17T10) | $[2]$ (GRH) |
| 17.1.476808395028704991385170074104521.1 | x17 + 7x - 1 | \( 3\cdot 149\cdot 2999\cdot 20147\cdot 25087\cdot 703721448833558213 \) | $S_{17}$ (as 17T10) | $[2]$ (GRH) |
| 17.1.27491618190065029690269314171395729.1 | x17 + 2x - 7 | \( 95071\cdot 55491923\cdot 5211016720401939622613 \) | $S_{17}$ (as 17T10) | $[2]$ (GRH) |
| 17.1.41538374868279448268505856970524945.1 | x17 + 8x - 1 | \( 5\cdot 7\cdot 16631\cdot 71361355933032887410783402717 \) | $S_{17}$ (as 17T10) | $[2]$ (GRH) |
| 17.1.41538374922492638831226936810864640.1 | x17 + 8x - 2 | \( 2^{16}\cdot 5\cdot 79\cdot 1604621015041404968695413587 \) | $S_{17}$ (as 17T10) | $[2]$ (GRH) |
| 17.1.307639702684502496242581464031889681.1 | x17 + 9x - 1 | \( 1181\cdot 47407\cdot 190338809\cdot 28868396700502785827 \) | $S_{17}$ (as 17T10) | $[2]$ (GRH) |
| 17.1.1491354531438187536283851230175539089.1 | x17 - 8x - 9 | \( 317\cdot 3947\cdot 217557343\cdot 5478740912916202340977 \) | $S_{17}$ (as 17T10) | $[2]$ (GRH) |
| 17.1.1528601630751208639629890556479123345.1 | x17 - 7x - 9 | \( 5\cdot 1163\cdot 1423\cdot 8419\cdot 811691\cdot 27032639906531808889 \) | $S_{17}$ (as 17T10) | $[2]$ (GRH) |
| 17.1.1532892589393816100254744826633498513.1 | x17 - 4x - 9 | \( 222789181528271\cdot 6880462412396351244703 \) | $S_{17}$ (as 17T10) | $[2]$ (GRH) |
| 17.1.1532892906306466138865351127099748241.1 | x17 - x - 9 | \( 19\cdot 43\cdot 1876245907351855739125276777355873 \) | $S_{17}$ (as 17T10) | $[2]$ (GRH) |
| 17.1.1532893223219116214369445574985101201.1 | x17 + 4x - 9 | \( 7\cdot 3167\cdot 69145799234025721249016445260729 \) | $S_{17}$ (as 17T10) | $[2]$ (GRH) |