Learn more about

Further refine search

Results (displaying all 28 matches)

Label Polynomial Discriminant Galois group Class group
13.13.50359924122392641.1 x13 - 2x12 - 11x11 + 23x10 + 39x9 - 91x8 - 44x7 + 145x6 - 6x5 - 89x4 + 29x3 + 14x2 - 8x + 1 \( 50359924122392641 \) $S_{13}$ (as 13T9) Trivial
13.13.74057741281094693.1 x13 - 3x12 - 8x11 + 27x10 + 22x9 - 89x8 - 23x7 + 132x6 + 5x5 - 87x4 + 4x3 + 21x2 - 2x - 1 \( 74057741281094693 \) $S_{13}$ (as 13T9) Trivial
13.13.491258904256726154641.1 x13 - x12 - 24x11 + 19x10 + 190x9 - 116x8 - 601x7 + 246x6 + 738x5 - 215x4 - 291x3 + 68x2 + 10x - 1 \( 53^{12} \) $C_{13}$ (as 13T1) Trivial
13.13.59091511031674153381441.1 x13 - x12 - 36x11 + 77x10 + 365x9 - 1193x8 - 617x7 + 5541x6 - 4414x5 - 4575x4 + 6321x3 + 411x2 - 2196x + 293 \( 79^{12} \) $C_{13}$ (as 13T1) Trivial
13.13.145952577189773202214912.1 x13 - 26x11 + 260x9 - 1248x7 + 2912x5 - 2912x3 + 832x - 176 \( 2^{12}\cdot 7^{6}\cdot 13^{13} \) $F_{13}$ (as 13T6) Trivial
13.13.282638808125771304198601.1 x13 - 3x12 - 41x11 + 155x10 + 376x9 - 2028x8 - 13x7 + 8927x6 - 7711x5 - 13367x4 + 20364x3 + 1404x2 - 13408x + 5312 \( 8101^{6} \) $D_{13}$ (as 13T2) Trivial (GRH)
13.13.353629668200918277880881.1 x13 - 39x11 + 507x9 - 156x8 - 2925x7 + 1872x6 + 7605x5 - 7488x4 - 6435x3 + 10062x2 - 2691x - 306 \( 3^{12}\cdot 13^{16} \) $C_{13}:C_3$ (as 13T3) Trivial
13.13.361712403654141025034641.1 x13 - x12 - 50x11 + 25x10 + 722x9 - 226x8 - 4207x7 + 1158x6 + 10465x5 - 2535x4 - 9399x3 + 1079x2 + 1316x - 49 \( 23^{6}\cdot 367^{6} \) $D_{13}$ (as 13T2) Trivial (GRH)
13.13.25542038069936263923006961.1 x13 - x12 - 60x11 + 27x10 + 1199x9 - 33x8 - 9610x7 - 3352x6 + 33548x5 + 20328x4 - 47723x3 - 34869x2 + 21271x + 15667 \( 131^{12} \) $C_{13}$ (as 13T1) Trivial (GRH)
13.13.224282727500720205065439601.1 x13 - x12 - 72x11 + 129x10 + 1672x9 - 3386x8 - 16810x7 + 32367x6 + 81708x5 - 121902x4 - 196272x3 + 127412x2 + 217458x + 61399 \( 157^{12} \) $C_{13}$ (as 13T1) Trivial (GRH)
13.13.302875106592253000000000000.1 x13 - 65x11 + 1625x9 - 19500x7 + 113750x5 - 284375x3 + 203125x - 69500 \( 2^{12}\cdot 5^{12}\cdot 13^{13} \) $F_{13}$ (as 13T6) Trivial (GRH)
13.13.542800770374370512771595361.1 x13 - 78x11 - 65x10 + 2080x9 + 2457x8 - 24128x7 - 27027x6 + 137683x5 + 110214x4 - 376064x3 - 128206x2 + 363883x - 12167 \( 13^{24} \) $C_{13}$ (as 13T1) Trivial (GRH)
13.13.9109989259587930139892578125.1 x13 - 130x11 - 390x10 + 3900x9 + 21255x8 + 10985x7 - 119145x6 - 213785x5 + 106470x4 + 499395x3 + 197730x2 - 296595x - 205335 \( 3^{6}\cdot 5^{12}\cdot 13^{15} \) $C_{13}:C_4$ (as 13T4) Trivial (GRH)
13.13.56748517752373669031468765184.1 x13 - 117x11 - 26x10 + 3692x9 + 2938x8 - 38987x7 - 54314x6 + 137670x5 + 290524x4 - 5824x3 - 298948x2 - 169403x - 13406 \( 2^{12}\cdot 3^{6}\cdot 13^{20} \) $C_{13}:C_6$ (as 13T5) Trivial (GRH)
13.13.884162417215006648162206715681.1 x13 - x12 - 144x11 + 161x10 + 6530x9 - 9620x8 - 109398x7 + 196143x6 + 512628x5 - 917970x4 - 650724x3 + 1134730x2 + 253950x - 409375 \( 313^{12} \) $C_{13}$ (as 13T1) Trivial (GRH)
13.13.1706902865139206151939937338729.1 x13 - 78x11 + 1989x9 - 1326x8 - 21255x7 + 33813x6 + 68328x5 - 216723x4 + 191178x3 - 51948x2 - 5850x + 1875 \( 3^{12}\cdot 13^{22} \) $C_{13}:C_6$ (as 13T5) Trivial (GRH)
13.13.11623368434110587434575082172853.1 x13 - 91x11 - 26x10 + 2951x9 + 1339x8 - 41431x7 - 25922x6 + 234988x5 + 213772x4 - 406770x3 - 373113x2 + 223587x + 170991 \( 13^{21}\cdot 19^{6} \) $C_{13}:C_4$ (as 13T4) Trivial (GRH)
13.13.57127433662862356193722241010001.1 x13 - x12 - 204x11 - 181x10 + 10752x9 + 9116x8 - 208418x7 - 161679x6 + 1686466x5 + 1207646x4 - 4904338x3 - 3051848x2 + 896956x + 144209 \( 443^{12} \) $C_{13}$ (as 13T1) Trivial (GRH)
13.13.362838554526023011241407675367424.1 x13 - 214x11 - 528x10 + 15084x9 + 63024x8 - 390420x7 - 2357568x6 + 2053638x5 + 30420288x4 + 30740796x3 - 108639936x2 - 240370524x - 132080544 \( 2^{36}\cdot 3^{16}\cdot 13^{6}\cdot 71^{4} \) $\PSL(3,3)$ (as 13T7) Trivial (GRH)
13.13.362838554526023011241407675367424.2 x13 - 222x11 - 64x10 + 18444x9 + 14832x8 - 723404x7 - 1021200x6 + 13437870x5 + 27216624x4 - 96770628x3 - 257555808x2 + 34006548x + 256489920 \( 2^{36}\cdot 3^{16}\cdot 13^{6}\cdot 71^{4} \) $\PSL(3,3)$ (as 13T7) Trivial (GRH)
13.13.399993265701109317068886081212641.1 x13 - x12 - 240x11 - 293x10 + 19153x9 + 45777x8 - 616830x7 - 1795569x6 + 7791196x5 + 23224049x4 - 29107980x3 - 68466088x2 + 31673025x + 4516075 \( 521^{12} \) $C_{13}$ (as 13T1) Trivial (GRH)
13.13.717542973516054083971838830896241.1 x13 - x12 - 252x11 + 1123x10 + 15626x9 - 107844x8 - 204415x7 + 3094114x6 - 4853400x5 - 22393129x4 + 91453411x3 - 116380476x2 + 47088126x - 1165671 \( 547^{12} \) $C_{13}$ (as 13T1) Trivial (GRH)
13.13.2133643557240451317422184503752801.1 x13 - x12 - 276x11 + 1967x10 + 8169x9 - 109375x8 + 114077x7 + 1684091x6 - 4924742x5 - 5465967x4 + 34969245x3 - 20502539x2 - 55304818x + 57031547 \( 599^{12} \) $C_{13}$ (as 13T1) Trivial (GRH)
13.13.9269664678331989431355838883693521.1 x13 - x12 - 312x11 + 765x10 + 31073x9 - 114643x8 - 1071164x7 + 4472586x6 + 13888428x5 - 61633266x4 - 43862553x3 + 238916059x2 - 140970591x - 1052321 \( 677^{12} \) $C_{13}$ (as 13T1) Trivial (GRH)
13.13.161405364891475526005003176560483281.1 x13 - x12 - 396x11 + 1235x10 + 45719x9 - 158783x8 - 2232951x7 + 7665285x6 + 47857178x5 - 162308625x4 - 381260855x3 + 1359880245x2 + 391778734x - 2211739517 \( 859^{12} \) $C_{13}$ (as 13T1) Trivial (GRH)
13.13.326753707264991140811478515720435521.1 x13 - x12 - 420x11 + 4253x10 + 2721x9 - 193733x8 + 735262x7 + 31458x6 - 3569396x5 + 1482536x4 + 4833237x3 + 1733969x2 - 40719x - 57869 \( 911^{12} \) $C_{13}$ (as 13T1) Trivial (GRH)
13.13.458010137458255714802917980980035681.1 x13 - x12 - 432x11 + 1203x10 + 46006x9 - 37046x8 - 2039413x7 - 3276218x6 + 27799988x5 + 87214801x4 - 38878963x3 - 420910202x2 - 520002704x - 190078187 \( 937^{12} \) $C_{13}$ (as 13T1) Trivial (GRH)
13.13.30876721812776703244552125405887603759765625.1 x13 - 2x12 - 306x11 + 737x10 + 35420x9 - 94473x8 - 1919784x7 + 5276958x6 + 48766779x5 - 126847180x4 - 502327474x3 + 1061716068x2 + 1350962689x - 1362894158 \( 3^{28}\cdot 5^{18}\cdot 29^{12} \) $A_{13}$ (as 13T8) Trivial (GRH)


Download all search results for