Learn more about

Further refine search

Results (displaying matches 1-50 of 2097) Next

Label Polynomial Discriminant Galois group Class group
12.0.1792160394037.1 x12 - x11 + x10 - x9 + x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + 1 \( 13^{11} \) $C_{12}$ (as 12T1) Trivial
12.0.11259376953125.1 x12 - x11 + 3x10 - 4x9 + 9x8 + 2x7 + 12x6 + x5 + 25x4 - 11x3 + 5x2 - 2x + 1 \( 5^{9}\cdot 7^{8} \) $C_{12}$ (as 12T1) Trivial
12.0.84075626953125.1 x12 + 3x10 - x9 + 9x8 + 9x7 + 28x6 + 18x5 + 75x4 + 26x3 + 9x2 + 3x + 1 \( 3^{16}\cdot 5^{9} \) $C_{12}$ (as 12T1) Trivial
12.12.551709470703125.1 x12 - x11 - 12x10 + 11x9 + 54x8 - 43x7 - 113x6 + 71x5 + 110x4 - 46x3 - 40x2 + 8x + 1 \( 5^{9}\cdot 7^{10} \) $C_{12}$ (as 12T1) Trivial
12.12.756680642578125.1 x12 - 12x10 - x9 + 54x8 + 9x7 - 112x6 - 27x5 + 105x4 + 31x3 - 36x2 - 12x + 1 \( 3^{18}\cdot 5^{9} \) $C_{12}$ (as 12T1) Trivial
12.12.1306484927252973.1 x12 - x11 - 12x10 + 12x9 + 53x8 - 53x7 - 103x6 + 103x5 + 79x4 - 79x3 - 12x2 + 12x + 1 \( 3^{6}\cdot 13^{11} \) $C_{12}$ (as 12T1) Trivial
12.0.1593224064453125.1 x12 - x11 + 5x10 - 10x9 + 31x8 + 50x7 + 84x6 + 85x5 + 201x4 + 55x3 + 15x2 + 4x + 1 \( 5^{9}\cdot 13^{8} \) $C_{12}$ (as 12T1) $[2, 2]$
12.12.7340688973975552.1 x12 - 13x10 + 65x8 - 156x6 + 182x4 - 91x2 + 13 \( 2^{12}\cdot 13^{11} \) $C_{12}$ (as 12T1) Trivial
12.12.8208085798828125.1 x12 - x11 - 22x10 + 14x9 + 153x8 - 62x7 - 396x6 + 84x5 + 361x4 - 87x3 - 112x2 + 37x + 1 \( 3^{6}\cdot 5^{9}\cdot 7^{8} \) $C_{12}$ (as 12T1) Trivial
12.0.28002506156828125.1 x12 - x11 + 14x10 - 14x9 + 79x8 - 79x7 + 235x6 - 235x5 + 417x4 - 417x3 + 508x2 - 508x + 521 \( 5^{6}\cdot 13^{11} \) $C_{12}$ (as 12T1) $[2, 2, 2]$
12.0.33171021564453125.1 x12 - x11 + 7x10 - 6x9 + 41x8 - 62x7 + 266x6 - 351x5 + 1513x4 - 1757x3 + 2107x2 - 2058x + 2401 \( 5^{9}\cdot 19^{8} \) $C_{12}$ (as 12T1) $[13]$
12.12.46118408000000000.1 x12 - 4x11 - 17x10 + 74x9 + 74x8 - 412x7 - 23x6 + 734x5 - 175x4 - 324x3 + 90x2 + 22x + 1 \( 2^{12}\cdot 5^{9}\cdot 7^{8} \) $C_{12}$ (as 12T1) Trivial
12.0.49519263525896192.1 x12 + 20x10 + 122x8 + 280x6 + 264x4 + 96x2 + 8 \( 2^{33}\cdot 7^{8} \) $C_{12}$ (as 12T1) $[3, 3]$
12.12.49519263525896192.1 x12 - 20x10 + 122x8 - 280x6 + 264x4 - 96x2 + 8 \( 2^{33}\cdot 7^{8} \) $C_{12}$ (as 12T1) Trivial
12.0.61132828589969773.1 x12 - x11 - 4x10 - 10x9 + 39x8 - 78x7 + 214x6 - 280x5 + 693x4 - 573x3 - 222x2 + 123x + 601 \( 7^{8}\cdot 13^{9} \) $C_{12}$ (as 12T1) $[2, 2]$
12.0.177917621779460413.1 x12 - x11 + 2x10 + 20x9 - 13x8 + 19x7 + 85x6 - 51x5 + 94x4 + 2x3 - 13x2 + 77x + 47 \( 37^{11} \) $C_{12}$ (as 12T1) Trivial
12.12.210845878198059013.1 x12 - x11 - 25x10 + 25x9 + 235x8 - 235x7 - 1013x6 + 1013x5 + 1899x4 - 1899x3 - 1013x2 + 1013x - 181 \( 7^{6}\cdot 13^{11} \) $C_{12}$ (as 12T1) Trivial
12.0.269254866892578125.1 x12 - x11 + 10x10 - 15x9 + x8 - 55x7 + 24x6 + 155x5 + 471x4 + 505x3 + 415x2 + 309x + 521 \( 5^{9}\cdot 13^{10} \) $C_{12}$ (as 12T1) $[2, 2, 2]$
12.12.344373768000000000.1 x12 - 27x10 - 4x9 + 234x8 + 36x7 - 737x6 + 72x5 + 795x4 - 336x3 - 96x2 + 42x + 1 \( 2^{12}\cdot 3^{16}\cdot 5^{9} \) $C_{12}$ (as 12T1) Trivial (GRH)
12.0.369768517790072832.1 x12 + 24x10 + 180x8 + 472x6 + 468x4 + 144x2 + 8 \( 2^{33}\cdot 3^{16} \) $C_{12}$ (as 12T1) $[13]$
12.12.369768517790072832.1 x12 - 24x10 - 4x9 + 180x8 + 36x7 - 502x6 - 36x5 + 501x4 - 32x3 - 138x2 + 36x - 1 \( 2^{33}\cdot 3^{16} \) $C_{12}$ (as 12T1) Trivial
12.0.402196204142578125.1 x12 - x11 + 23x10 - 24x9 + 194x8 - 218x7 + 832x6 - 1084x5 + 2455x4 - 2566x3 + 5315x2 - 1567x + 6931 \( 3^{6}\cdot 5^{9}\cdot 7^{10} \) $C_{12}$ (as 12T1) $[2, 26]$
12.0.456488925854205933.1 x12 - 3x11 - 3x10 + 25x9 + 3x8 + 30x7 + 140x6 - 60x5 + 348x4 - 286x3 - 822x2 + 567x + 1569 \( 3^{16}\cdot 13^{9} \) $C_{12}$ (as 12T1) $[3, 3]$
12.0.469804094334435328.1 x12 + 26x10 + 260x8 + 1248x6 + 2912x4 + 2912x2 + 832 \( 2^{18}\cdot 13^{11} \) $C_{12}$ (as 12T1) $[26]$
12.12.469804094334435328.1 x12 - 26x10 + 260x8 - 1248x6 + 2912x4 - 2912x2 + 832 \( 2^{18}\cdot 13^{11} \) $C_{12}$ (as 12T1) Trivial
12.12.683635509017782097.1 x12 - x11 - 28x10 + 31x9 + 232x8 - 249x7 - 742x6 + 716x5 + 925x4 - 785x3 - 388x2 + 288x + 13 \( 7^{8}\cdot 17^{9} \) $C_{12}$ (as 12T1) Trivial (GRH)
12.12.1161460342986328125.1 x12 - x11 - 30x10 + 10x9 + 291x8 - 20x7 - 1136x6 + 90x5 + 1881x4 - 395x3 - 1100x2 + 409x + 31 \( 3^{6}\cdot 5^{9}\cdot 13^{8} \) $C_{12}$ (as 12T1) Trivial (GRH)
12.0.1665802807501953125.1 x12 - x11 + 11x10 - 13x9 + 115x8 - 46x7 + 1092x6 - 632x5 + 11184x4 - 8768x3 + 6912x2 - 5120x + 4096 \( 5^{9}\cdot 31^{8} \) $C_{12}$ (as 12T1) $[3, 3]$
12.0.2259801992000000000.1 x12 + 35x10 + 455x8 + 2800x6 + 8575x4 + 12250x2 + 6125 \( 2^{12}\cdot 5^{9}\cdot 7^{10} \) $C_{12}$ (as 12T1) $[2, 26]$
12.0.2426443912768913408.1 x12 + 28x10 + 266x8 + 1064x6 + 1960x4 + 1568x2 + 392 \( 2^{33}\cdot 7^{10} \) $C_{12}$ (as 12T1) $[2, 26]$
12.12.2426443912768913408.1 x12 - 28x10 + 266x8 - 1064x6 + 1960x4 - 1568x2 + 392 \( 2^{33}\cdot 7^{10} \) $C_{12}$ (as 12T1) Trivial (GRH)
12.0.2951578112000000000.1 x12 - 4x11 + 28x10 - 76x9 + 359x8 - 772x7 + 2662x6 - 4216x5 + 11540x4 - 13284x3 + 37260x2 - 26468x + 52681 \( 2^{18}\cdot 5^{9}\cdot 7^{8} \) $C_{12}$ (as 12T1) $[146]$
12.12.2951578112000000000.1 x12 - 4x11 - 32x10 + 124x9 + 339x8 - 1252x7 - 1458x6 + 4864x5 + 2480x4 - 6484x3 - 1580x2 + 2052x - 239 \( 2^{18}\cdot 5^{9}\cdot 7^{8} \) $C_{12}$ (as 12T1) Trivial (GRH)
12.12.2995508600908518877.1 x12 - x11 - 31x10 + 28x9 + 292x8 - 208x7 - 946x6 + 596x5 + 1123x4 - 672x3 - 369x2 + 215x + 1 \( 7^{10}\cdot 13^{9} \) $C_{12}$ (as 12T1) Trivial (GRH)
12.0.3099363912000000000.1 x12 + 30x10 + 315x8 + 1500x6 + 3375x4 + 3375x2 + 1125 \( 2^{12}\cdot 3^{18}\cdot 5^{9} \) $C_{12}$ (as 12T1) $[10, 10]$
12.12.3174921459820581757.1 x12 - x11 - 38x10 + 38x9 + 547x8 - 547x7 - 3665x6 + 3665x5 + 11077x4 - 11077x3 - 11036x2 + 11036x - 1559 \( 11^{6}\cdot 13^{11} \) $C_{12}$ (as 12T1) Trivial (GRH)
12.0.3327916660110655488.1 x12 + 24x10 + 180x8 + 552x6 + 756x4 + 432x2 + 72 \( 2^{33}\cdot 3^{18} \) $C_{12}$ (as 12T1) $[26]$
12.12.3327916660110655488.1 x12 - 24x10 + 180x8 - 552x6 + 756x4 - 432x2 + 72 \( 2^{33}\cdot 3^{18} \) $C_{12}$ (as 12T1) Trivial
12.12.3500313269603515625.1 x12 - x11 - 25x10 + 25x9 + 196x8 - 170x7 - 571x6 + 350x5 + 586x4 - 105x3 - 155x2 - x + 1 \( 5^{9}\cdot 13^{11} \) $C_{12}$ (as 12T1) $[2]$
12.12.3500313269603515625.2 x12 - x11 - 25x10 + 25x9 + 196x8 - 170x7 - 571x6 + 350x5 + 586x4 - 170x3 - 90x2 - x + 1 \( 5^{9}\cdot 13^{11} \) $C_{12}$ (as 12T1) $[2]$
12.12.4108400332687853397.1 x12 - 30x10 - 17x9 + 279x8 + 285x7 - 752x6 - 909x5 + 600x4 + 858x3 - 72x2 - 243x - 51 \( 3^{18}\cdot 13^{9} \) $C_{12}$ (as 12T1) Trivial (GRH)
12.12.5104819233548816337.1 x12 - 3x11 - 27x10 + 64x9 + 231x8 - 435x7 - 819x6 + 1107x5 + 1245x4 - 867x3 - 765x2 + 17 \( 3^{16}\cdot 17^{9} \) $C_{12}$ (as 12T1) Trivial
12.0.5351362262028177408.1 x12 + 39x10 + 585x8 + 4212x6 + 14742x4 + 22113x2 + 9477 \( 2^{12}\cdot 3^{6}\cdot 13^{11} \) $C_{12}$ (as 12T1) $[2, 2, 26]$
12.12.6525845768000000000.1 x12 - 4x11 - 25x10 + 90x9 + 206x8 - 660x7 - 511x6 + 2010x5 - 219x4 - 2040x3 + 1290x2 - 54x - 79 \( 2^{12}\cdot 5^{9}\cdot 13^{8} \) $C_{12}$ (as 12T1) Trivial (GRH)
12.0.6860311433439453125.1 x12 - x11 + 13x10 - 36x9 + 203x8 + 718x7 + 2114x6 + 4269x5 + 13201x4 + 14773x3 + 16093x2 + 15972x + 14641 \( 5^{9}\cdot 37^{8} \) $C_{12}$ (as 12T1) $[7, 7]$
12.0.7007073538075000832.1 x12 - 4x11 + 2x10 + 71x8 - 60x7 - 166x6 - 468x5 + 234x4 + 2196x3 + 5160x2 + 3408x + 2417 \( 2^{33}\cdot 13^{8} \) $C_{12}$ (as 12T1) $[13]$
12.12.7007073538075000832.1 x12 - 4x11 - 22x10 + 80x9 + 159x8 - 508x7 - 406x6 + 1276x5 + 194x4 - 1100x3 + 184x2 + 256x - 79 \( 2^{33}\cdot 13^{8} \) $C_{12}$ (as 12T1) Trivial
12.12.9891413435408203125.1 x12 - 3x11 - 36x10 + 106x9 + 393x8 - 1164x7 - 1350x6 + 4794x5 + 441x4 - 6643x3 + 1926x2 + 2865x - 1349 \( 3^{16}\cdot 5^{9}\cdot 7^{6} \) $C_{12}$ (as 12T1) Trivial (GRH)
12.0.10331448031704891637.1 x12 - x11 + x10 - 27x9 + 27x8 + 90x7 + 53x6 - 1353x5 + 768x4 + 3886x3 + 1600x2 - 5409x + 1847 \( 7^{8}\cdot 13^{11} \) $C_{12}$ (as 12T1) $[3]$
12.0.10331448031704891637.2 x12 - x11 + x10 - 27x9 + 27x8 - 183x7 + 326x6 + 649x5 + 131x4 - 573x3 + 1782x2 - 2133x + 4941 \( 7^{8}\cdot 13^{11} \) $C_{12}$ (as 12T1) $[111]$
Next

Download all search results for