Further refine search
Results (displaying matches 1-50 of at least 1000) Next
| Label | Polynomial | Discriminant | Galois group | Class group |
|---|---|---|---|---|
| 12.0.7086244000000.1 | x12 - x11 + 5x10 - 10x9 + 9x8 - 9x7 + 14x6 + 9x5 + 9x4 + 10x3 + 5x2 + x + 1 | \( 2^{8}\cdot 5^{6}\cdot 11^{6} \) | $D_6$ (as 12T3) | $[2]$ |
| 12.0.8067775586689.1 | x12 - 5x11 + 18x10 - 48x9 + 100x8 - 178x7 + 267x6 - 336x5 + 364x4 - 329x3 + 245x2 - 147x + 49 | \( 7^{10}\cdot 13^{4} \) | $A_4 \times C_2$ (as 12T7) | $[2]$ |
| 12.0.8916100448256.2 | x12 - 4x11 + 4x10 + 12x9 - 37x8 + 32x7 + 22x6 - 80x5 + 88x4 - 48x3 + 10x2 + 1 | \( 2^{24}\cdot 3^{12} \) | $C_6\times S_3$ (as 12T18) | $[2]$ |
| 12.0.11709207984384.1 | x12 - 6x11 + 15x10 - 20x9 + 22x8 - 34x7 + 47x6 - 40x5 + 38x4 - 42x3 + 27x2 - 8x + 1 | \( 2^{8}\cdot 3^{6}\cdot 89^{4} \) | $S_5$ (as 12T74) | $[2]$ |
| 12.0.12745792515625.1 | x12 - 5x11 + 12x10 - 24x9 + 48x8 - 66x7 + 53x6 - 36x5 + 42x4 - 41x3 + 23x2 - 7x + 1 | \( 5^{6}\cdot 13^{8} \) | $A_4$ (as 12T4) | $[2]$ |
| 12.0.12993941393521.1 | x12 - 2x11 + 4x10 + 3x9 + 7x8 + 11x7 + 22x6 + 3x5 + 22x4 - 14x3 + 11x2 - 5x + 1 | \( 11^{4}\cdot 31^{6} \) | $S_4$ (as 12T9) | $[2]$ |
| 12.0.13867245015625.1 | x12 - 3x11 + 12x10 - 15x9 + 17x8 - 12x7 + 21x6 + 12x5 + 17x4 + 15x3 + 12x2 + 3x + 1 | \( 5^{6}\cdot 31^{6} \) | $D_6$ (as 12T3) | $[2]$ |
| 12.0.14412774445056.1 | x12 - x11 - x10 - 4x9 + 7x8 - 3x7 + 2x6 + 3x5 + 7x4 + 4x3 - x2 + x + 1 | \( 2^{12}\cdot 3^{6}\cdot 13^{6} \) | $S_3 \times C_2^2$ (as 12T10) | $[2]$ |
| 12.0.14512627712000.1 | x12 - 4x11 + 7x10 - 2x9 - 16x8 + 20x7 + x6 - 40x5 + 18x4 + 74x3 + 49x2 + 12x + 1 | \( 2^{16}\cdot 5^{3}\cdot 11^{6} \) | $(C_6\times C_2):C_2$ (as 12T15) | $[2]$ |
| 12.0.19292185090369.1 | x12 - 2x11 + 9x10 - 18x9 + 47x8 - 50x7 + 119x6 - 82x5 + 145x4 - 70x3 + 61x2 + 12x + 1 | \( 19^{4}\cdot 23^{6} \) | $S_4$ (as 12T9) | $[2]$ |
| 12.0.23086477815921.1 | x12 - 3x11 - x9 + 33x8 - 66x7 + 81x6 - 66x5 + 33x4 - x3 - 3x + 1 | \( 3^{14}\cdot 13^{6} \) | $D_6$ (as 12T3) | $[2]$ |
| 12.0.27825593350009.1 | x12 - 3x11 + 5x10 - 13x9 + 36x8 - 72x7 + 115x6 - 150x5 + 144x4 - 92x3 + 38x2 - 9x + 1 | \( 7^{8}\cdot 13^{6} \) | $A_4$ (as 12T4) | $[2]$ |
| 12.0.29721861554176.5 | x12 - 4x11 + 12x10 - 32x9 + 49x8 - 52x7 + 38x6 + 8x5 + 15x4 + 12x3 + 26x2 + 8x + 1 | \( 2^{24}\cdot 11^{6} \) | $C_2 \times S_4$ (as 12T24) | $[2]$ |
| 12.0.29721861554176.8 | x12 - 4x11 + 6x10 - 4x9 + 6x8 - 12x7 + 30x6 - 88x5 + 184x4 - 236x3 + 180x2 - 76x + 14 | \( 2^{24}\cdot 11^{6} \) | $C_2 \times S_4$ (as 12T24) | $[2]$ |
| 12.0.30667140235264.4 | x12 - 9x8 + 23x4 + 1 | \( 2^{30}\cdot 13^{4} \) | $C_2^2\times S_4$ (as 12T48) | $[2]$ |
| 12.0.32357746661769.1 | x12 - 6x11 + 12x10 - 3x9 - 18x8 - 3x7 + 67x6 - 39x5 - 39x4 - 12x3 + 36x2 + 12x + 1 | \( 3^{18}\cdot 17^{4} \) | $A_4 \times C_2$ (as 12T7) | $[2]$ |
| 12.0.38806720086016.1 | x12 - 4x11 + 6x10 + 2x9 + 9x8 - 30x7 - 32x5 + 22x4 + 46x3 + 24x2 + 4x + 1 | \( 2^{18}\cdot 23^{6} \) | $C_2 \times S_4$ (as 12T24) | $[2]$ |
| 12.0.38806720086016.3 | x12 - 2x11 + 2x10 + 9x8 - 24x7 + 30x6 - 4x5 + 6x4 - 46x3 + 98x2 - 70x + 25 | \( 2^{18}\cdot 23^{6} \) | $C_2 \times S_4$ (as 12T24) | $[2]$ |
| 12.0.38806720086016.10 | x12 + 2x10 + 20x8 + 72x6 + 80x4 + 32x2 + 64 | \( 2^{18}\cdot 23^{6} \) | $D_6$ (as 12T3) | $[2]$ |
| 12.0.40060837890625.1 | x12 - 4x11 + 8x10 - 12x9 + 7x8 + x7 - x6 + 7x5 + 8x4 - x3 + 4x2 + x + 1 | \( 5^{9}\cdot 29^{5} \) | $C_3:S_3.D_4$ (as 12T82) | $[2]$ |
| 12.0.40122452017152.1 | x12 - 6x9 + 36x7 - 55x6 - 6x5 + 99x4 - 120x3 + 72x2 - 24x + 4 | \( 2^{23}\cdot 3^{14} \) | $C_4\times S_4$ (as 12T53) | $[2]$ |
| 12.0.40400838383661.1 | x12 - 2x11 + 5x10 - 3x9 + 5x8 + 4x7 + x6 + 4x5 + 5x4 - 3x3 + 5x2 - 2x + 1 | \( 3^{3}\cdot 7^{3}\cdot 257^{4} \) | 12T221 | $[2]$ |
| 12.0.41326975008000.1 | x12 - 4x11 + 2x10 + 13x9 - 19x8 - 12x7 + 39x6 - 24x5 + 41x4 - 59x3 - 73x2 + 77x + 121 | \( 2^{8}\cdot 3^{6}\cdot 5^{3}\cdot 11^{6} \) | $(C_6\times C_2):C_2$ (as 12T15) | $[2]$ |
| 12.0.45056958152704.1 | x12 + 3x10 + 6x8 + 7x6 - 5x4 + 4 | \( 2^{14}\cdot 229^{4} \) | 12T226 | $[2]$ |
| 12.0.47464824438784.2 | x12 - x10 + 11x8 - 6x6 + 11x4 - x2 + 1 | \( 2^{26}\cdot 29^{4} \) | $C_2^2\times C_2^2:S_4$ (as 12T139) | $[2]$ |
| 12.0.47464824438784.6 | x12 - x10 - 2x9 - 4x8 + 8x7 - 10x6 + 4x5 + 38x4 - 64x3 + 50x2 - 20x + 4 | \( 2^{26}\cdot 29^{4} \) | $C_2^2\times C_2^2:S_4$ (as 12T139) | $[2]$ |
| 12.0.47464824438784.7 | x12 + 9x8 - 28x6 + 52x4 - 24x2 + 4 | \( 2^{26}\cdot 29^{4} \) | $C_2^2\times S_4$ (as 12T48) | $[2]$ |
| 12.0.47464824438784.13 | x12 + 9x8 + 28x6 + 52x4 + 24x2 + 4 | \( 2^{26}\cdot 29^{4} \) | $C_2^2\times S_4$ (as 12T48) | $[2]$ |
| 12.0.52716660869376.1 | x12 - 3x11 + 7x10 - 8x9 + 3x8 + 21x7 - 20x6 + 21x5 + 19x4 - 22x3 + 21x2 - 5x + 1 | \( 2^{8}\cdot 3^{6}\cdot 7^{10} \) | $D_6$ (as 12T3) | $[3]$ |
| 12.0.54203275126125.1 | x12 - x11 + x10 - 3x9 + 9x8 - x7 + 13x6 - x5 + 9x4 - 3x3 + x2 - x + 1 | \( 3^{6}\cdot 5^{3}\cdot 29^{6} \) | $S_3\times D_4$ (as 12T28) | $[2]$ |
| 12.0.56192894500864.1 | x12 - 6x9 - 5x8 - 14x7 + 18x6 + 26x5 + 7x4 + 30x3 + 32x2 - 8x + 1 | \( 2^{18}\cdot 11^{8} \) | $C_2 \times S_4$ (as 12T23) | $[2]$ |
| 12.0.56192894500864.2 | x12 - 2x11 + 8x10 - 4x9 + 5x8 + 10x7 - 14x6 - 10x5 + 5x4 + 4x3 + 8x2 + 2x + 1 | \( 2^{18}\cdot 11^{8} \) | $C_2 \times S_4$ (as 12T24) | $[2]$ |
| 12.0.60236288000000.1 | x12 - 5x11 + 9x10 - 3x9 - 14x8 + 36x7 - 26x6 - 4x5 + 46x4 - 54x3 + 40x2 - 16x + 4 | \( 2^{15}\cdot 5^{6}\cdot 7^{6} \) | $S_3\times D_4$ (as 12T28) | $[2]$ |
| 12.0.64793042714624.1 | x12 - 14x10 + 77x8 - 203x6 + 280x4 - 196x2 + 56 | \( 2^{15}\cdot 7^{11} \) | $D_4 \times C_3$ (as 12T14) | $[2]$ |
| 12.0.67834724548608.1 | x12 - 6x11 + 20x10 - 44x9 + 66x8 - 56x7 + 4x6 + 40x5 - 16x4 - 40x3 + 52x2 - 24x + 4 | \( 2^{16}\cdot 3^{6}\cdot 17^{5} \) | $S_3\times D_4$ (as 12T28) | $[2]$ |
| 12.0.70955197267968.1 | x12 - 2x10 - 2x9 + 6x8 + 10x7 - 23x6 - 10x5 + 63x4 - 72x3 + 39x2 - 10x + 1 | \( 2^{18}\cdot 3^{6}\cdot 13^{5} \) | $S_3\times D_4$ (as 12T28) | $[2]$ |
| 12.0.72964670628096.1 | x12 - x11 - x10 + 12x9 - 5x8 - 5x7 + 52x6 - 35x5 + 37x4 + 24x3 + 23x2 + 5x + 1 | \( 2^{8}\cdot 3^{10}\cdot 13^{6} \) | $S_3^2$ (as 12T16) | $[2]$ |
| 12.0.74049191673856.2 | x12 + 2x10 + 4x8 + 8x6 + 16x4 + 32x2 + 64 | \( 2^{18}\cdot 7^{10} \) | $C_6\times C_2$ (as 12T2) | $[2]$ |
| 12.0.74049191673856.3 | x12 - 6x11 + 18x10 - 28x9 + 26x8 - 16x7 + 20x6 - 22x5 + 17x4 - 14x3 + 2x2 + 2x + 1 | \( 2^{18}\cdot 7^{10} \) | $C_2^2 \times A_4$ (as 12T25) | $[2]$ |
| 12.0.74049191673856.4 | x12 - 4x11 + 6x10 - 12x9 + 30x8 - 56x7 + 120x6 - 224x5 + 284x4 - 240x3 + 136x2 - 48x + 8 | \( 2^{18}\cdot 7^{10} \) | $A_4\times C_2$ (as 12T6) | $[2]$ |
| 12.0.80244904034304.3 | x12 - 8x9 + 15x8 + 24x7 + 32x6 - 24x5 + 15x4 + 8x3 + 1 | \( 2^{24}\cdot 3^{14} \) | $D_6$ (as 12T3) | $[2]$ |
| 12.0.80244904034304.5 | x12 + 9x8 - 20x6 - 12x4 + 24x2 + 4 | \( 2^{24}\cdot 3^{14} \) | $D_6$ (as 12T3) | $[2]$ |
| 12.0.80244904034304.6 | x12 + 32x6 + 48x4 + 24x2 + 4 | \( 2^{24}\cdot 3^{14} \) | $C_2 \times S_4$ (as 12T24) | $[2]$ |
| 12.0.80244904034304.7 | x12 + 12x8 + 36x4 + 36 | \( 2^{24}\cdot 3^{14} \) | $C_2 \times S_4$ (as 12T24) | $[2]$ |
| 12.0.80873772931125.1 | x12 - x11 + 2x10 + 2x9 - 2x8 + 4x7 - 49x6 - 59x5 + 40x4 + 51x3 + 78x2 + 144x + 72 | \( 3^{6}\cdot 5^{3}\cdot 31^{6} \) | $(C_6\times C_2):C_2$ (as 12T15) | $[2]$ |
| 12.0.80980417183744.2 | x12 + 8x10 + 24x8 + 38x6 + 24x4 + 8x2 + 1 | \( 2^{24}\cdot 13^{6} \) | $C_2 \times S_4$ (as 12T24) | $[2]$ |
| 12.0.80980417183744.5 | x12 + x8 + 4x6 + 36x4 - 24x2 + 4 | \( 2^{24}\cdot 13^{6} \) | $S_3 \times C_2^2$ (as 12T10) | $[2]$ |
| 12.0.80980417183744.6 | x12 - 2x10 + 6x8 + 2x6 + x4 + 4x2 + 4 | \( 2^{24}\cdot 13^{6} \) | $C_2 \times S_4$ (as 12T24) | $[2]$ |
| 12.0.80980417183744.7 | x12 + x8 - 4x6 + 36x4 + 24x2 + 4 | \( 2^{24}\cdot 13^{6} \) | $D_6$ (as 12T3) | $[2]$ |
| 12.0.80980417183744.8 | x12 - 4x9 - 7x8 - 36x7 + 8x6 + 144x5 + 276x4 + 248x3 + 128x2 + 32x + 4 | \( 2^{24}\cdot 13^{6} \) | $D_6$ (as 12T3) | $[2]$ |
In order to download results, determine the number of results.