Further refine search
Results (displaying matches 1-50 of at least 1000) Next
| Label | Polynomial | Discriminant | Galois group | Class group |
|---|---|---|---|---|
| 12.0.14011639427134441.1 | x12 - 4x10 + 28x8 - 76x6 + 200x4 + 155x2 + 196 | \( 491^{6} \) | $S_4$ (as 12T9) | $[12]$ |
| 12.0.33171021564453125.1 | x12 - x11 + 7x10 - 6x9 + 41x8 - 62x7 + 266x6 - 351x5 + 1513x4 - 1757x3 + 2107x2 - 2058x + 2401 | \( 5^{9}\cdot 19^{8} \) | $C_{12}$ (as 12T1) | $[13]$ |
| 12.0.39957753600631952.1 | x12 - 2x11 + 4x10 - 4x9 + 4x8 + 2x7 - 3x6 + 4x5 + 16x4 - 32x3 + 64x2 - 64x + 64 | \( 2^{4}\cdot 79^{2}\cdot 2153\cdot 13633^{2} \) | 12T293 | $[11]$ |
| 12.0.42590699184263473.1 | x12 + 3x10 - x9 + 12x8 - 2x7 + 23x6 - 4x5 + 48x4 - 8x3 + 48x2 + 64 | \( 89\cdot 107^{2}\cdot 137\cdot 17467^{2} \) | 12T293 | $[12]$ |
| 12.0.52206766144000000.1 | x12 + 25x10 + 208x8 + 655x6 + 741x4 + 290x2 + 25 | \( 2^{12}\cdot 5^{6}\cdot 13^{8} \) | $C_6\times C_2$ (as 12T2) | $[2, 6]$ |
| 12.0.53981860730241024.1 | x12 + 22x10 + 176x8 + 624x6 + 960x4 + 512x2 + 64 | \( 2^{18}\cdot 3^{6}\cdot 7^{10} \) | $C_6\times C_2$ (as 12T2) | $[12]$ |
| 12.0.53981860730241024.3 | x12 + 14x10 + 140x8 + 672x6 + 2352x4 + 3136x2 + 3136 | \( 2^{18}\cdot 3^{6}\cdot 7^{10} \) | $C_6\times C_2$ (as 12T2) | $[14]$ |
| 12.0.53981860730241024.4 | x12 - 2x11 + x10 + 4x9 + 38x8 - 88x7 + 174x6 - 82x5 + 496x4 - 844x3 + 2776x2 - 2432x + 3361 | \( 2^{18}\cdot 3^{6}\cdot 7^{10} \) | $C_6\times C_2$ (as 12T2) | $[14]$ |
| 12.0.53981860730241024.5 | x12 - 6x10 + 36x8 - 216x6 + 1296x4 - 7776x2 + 46656 | \( 2^{18}\cdot 3^{6}\cdot 7^{10} \) | $C_6\times C_2$ (as 12T2) | $[2, 6]$ |
| 12.0.53981860730241024.6 | x12 + 6x10 + 36x8 + 216x6 + 1296x4 + 7776x2 + 46656 | \( 2^{18}\cdot 3^{6}\cdot 7^{10} \) | $C_6\times C_2$ (as 12T2) | $[14]$ |
| 12.0.60314363410603073.1 | x12 - x11 + 3x10 + 8x8 - 4x7 + 23x6 - 8x5 + 32x4 + 48x2 - 32x + 64 | \( 41^{2}\cdot 8513\cdot 64921^{2} \) | 12T293 | $[12]$ |
| 12.0.60814439242268672.1 | x12 + 4x10 + 10x8 - 4x7 + 22x6 - 8x5 + 40x4 + 64x2 + 64 | \( 2^{22}\cdot 31^{2}\cdot 41\cdot 71^{2}\cdot 73 \) | 12T260 | $[12]$ |
| 12.0.61585005599133696.1 | x12 + 6x10 + 21x8 + 49x6 + 84x4 + 96x2 + 64 | \( 2^{12}\cdot 3^{18}\cdot 197^{2} \) | $C_2^2 \times A_4$ (as 12T25) | $[14]$ |
| 12.0.65470184848162816.1 | x12 - 4x11 + 11x10 - 24x9 + 46x8 - 76x7 + 114x6 - 152x5 + 184x4 - 192x3 + 176x2 - 128x + 64 | \( 2^{16}\cdot 151^{2}\cdot 191^{2}\cdot 1201 \) | 12T293 | $[11]$ |
| 12.0.70943728834969600.2 | x12 + 6x10 + 20x8 + 46x6 + 80x4 + 96x2 + 64 | \( 2^{22}\cdot 5^{2}\cdot 19^{2}\cdot 37^{4} \) | $C_2^2\times S_4$ (as 12T48) | $[12]$ |
| 12.0.76212492224515625.1 | x12 - 3x11 + 8x10 - 16x9 + 32x8 - 51x7 + 79x6 - 102x5 + 128x4 - 128x3 + 128x2 - 96x + 64 | \( 5^{6}\cdot 11^{4}\cdot 181^{2}\cdot 10169 \) | 12T260 | $[11]$ |
| 12.0.86703599443555193.1 | x12 - 2x11 + 7x10 - 13x9 + 28x8 - 43x7 + 69x6 - 86x5 + 112x4 - 104x3 + 112x2 - 64x + 64 | \( 11^{2}\cdot 137\cdot 349^{2}\cdot 6553^{2} \) | 12T293 | $[12]$ |
| 12.0.93099004126639569.1 | x12 - 5x11 + 16x10 - 39x9 + 79x8 - 137x7 + 207x6 - 274x5 + 316x4 - 312x3 + 256x2 - 160x + 64 | \( 3^{2}\cdot 3089\cdot 1829963^{2} \) | 12T293 | $[13]$ |
| 12.0.93358894582925968.1 | x12 - 3x11 + 6x10 - 7x9 + 8x8 - 6x7 + 9x6 - 12x5 + 32x4 - 56x3 + 96x2 - 96x + 64 | \( 2^{4}\cdot 2833\cdot 1435141^{2} \) | 12T293 | $[12]$ |
| 12.0.101439097511492601.1 | x12 - x11 + 18x10 - 5x9 + 243x8 - 98x7 + 1039x6 - 210x5 + 3303x4 - 1139x3 + 1366x2 + 325x + 169 | \( 3^{6}\cdot 7^{8}\cdot 17^{6} \) | $C_6\times C_2$ (as 12T2) | $[13]$ |
| 12.0.103997395628457984.53 | x12 - 6x10 + 3x8 - 8x6 + 294x4 + 816x2 + 100 | \( 2^{28}\cdot 3^{18} \) | $C_2 \times S_4$ (as 12T24) | $[12]$ |
| 12.0.103997395628457984.64 | x12 + 12x10 + 48x8 + 64x6 - 12x4 - 48x2 + 784 | \( 2^{28}\cdot 3^{18} \) | $C_2 \times S_4$ (as 12T23) | $[12]$ |
| 12.0.103997395628457984.90 | x12 + 6x10 + 45x8 + 336x6 + 1296x4 + 648x2 + 324 | \( 2^{28}\cdot 3^{18} \) | $C_2\times S_4$ (as 12T21) | $[2, 6]$ |
| 12.0.104623783936000000.1 | x12 + 15x10 + 86x8 + 239x6 + 334x4 + 217x2 + 49 | \( 2^{20}\cdot 5^{6}\cdot 7^{2}\cdot 19^{4} \) | 12T158 | $[12]$ |
| 12.0.106113981554053376.1 | x12 - 3x11 + 9x10 - 19x9 + 38x8 - 62x7 + 94x6 - 124x5 + 152x4 - 152x3 + 144x2 - 96x + 64 | \( 2^{8}\cdot 37^{4}\cdot 281^{2}\cdot 2801 \) | 12T250 | $[17]$ |
| 12.0.109436699097976761.1 | x12 - 14x9 + 224x6 - 490x3 + 343 | \( 3^{18}\cdot 7^{10} \) | $C_6\times C_2$ (as 12T2) | $[21]$ |
| 12.0.112519142144278528.1 | x12 - 3x11 + 5x10 - 4x9 - x8 + 13x7 - 25x6 + 26x5 - 4x4 - 32x3 + 80x2 - 96x + 64 | \( 2^{16}\cdot 137^{2}\cdot 337\cdot 521^{2} \) | 12T293 | $[12]$ |
| 12.0.112584506495441152.1 | x12 - x11 + 4x10 - 4x9 + 12x8 - 12x7 + 28x6 - 24x5 + 48x4 - 32x3 + 64x2 - 32x + 64 | \( 2^{8}\cdot 673\cdot 808373^{2} \) | 12T293 | $[12]$ |
| 12.0.113033123172146593.1 | x12 - 5x11 + 15x10 - 34x9 + 64x8 - 104x7 + 153x6 - 208x5 + 256x4 - 272x3 + 240x2 - 160x + 64 | \( 13^{2}\cdot 2113\cdot 562613^{2} \) | 12T293 | $[11]$ |
| 12.0.113293705669460577.1 | x12 - x11 + 4x10 - 2x9 + 6x8 - 4x7 + 11x6 - 8x5 + 24x4 - 16x3 + 64x2 - 32x + 64 | \( 3^{2}\cdot 97^{2}\cdot 5737\cdot 15271^{2} \) | 12T293 | $[11]$ |
| 12.0.113973630361636864.1 | x12 + 29x10 + 284x8 + 1095x6 + 1541x4 + 326x2 + 1 | \( 2^{12}\cdot 7^{8}\cdot 13^{6} \) | $C_6\times C_2$ (as 12T2) | $[2, 6]$ |
| 12.0.114172357111328125.1 | x12 - 2x11 + 13x10 - 33x9 + 71x8 - 184x7 + 319x6 - 378x5 + 1268x4 - 99x3 + 2343x2 + 41x + 1691 | \( 5^{9}\cdot 3881^{3} \) | $S_3^2:C_4$ (as 12T80) | $[20]$ |
| 12.0.117090537973140032.1 | x12 - 2x11 + 7x10 - 13x9 + 27x8 - 43x7 + 67x6 - 86x5 + 108x4 - 104x3 + 112x2 - 64x + 64 | \( 2^{6}\cdot 7^{2}\cdot 229^{4}\cdot 13577 \) | 12T250 | $[12]$ |
| 12.0.117451023583608832.1 | x12 - 4x11 + 16x10 - 38x9 + 74x8 - 114x7 + 248x6 - 368x5 + 302x4 - 142x3 + 48x2 - 10x + 1 | \( 2^{16}\cdot 13^{11} \) | $C_4:S_4$ (as 12T54) | $[12]$ |
| 12.0.119113607154579712.1 | x12 - x11 + 4x10 - 2x9 + 12x8 - 8x7 + 30x6 - 16x5 + 48x4 - 16x3 + 64x2 - 32x + 64 | \( 2^{8}\cdot 3457\cdot 366869^{2} \) | 12T293 | $[19]$ |
| 12.0.125296227979701209.1 | x12 - 3x11 + 8x10 - 15x9 + 29x8 - 43x7 + 67x6 - 86x5 + 116x4 - 120x3 + 128x2 - 96x + 64 | \( 101^{2}\cdot 11369\cdot 32869^{2} \) | 12T293 | $[15]$ |
| 12.0.125854463671248325.1 | x12 - 2x11 + 17x10 - 34x9 + 159x8 - 305x7 + 909x6 - 1493x5 + 2869x4 - 3385x3 + 3910x2 - 2646x + 1171 | \( 5^{2}\cdot 13^{11}\cdot 53^{2} \) | $C_4\times A_4$ (as 12T29) | $[2, 2, 4]$ |
| 12.0.131621703842267136.57 | x12 + 12x10 + 51x8 + 28x6 + 69x4 + 30x2 + 64 | \( 2^{22}\cdot 3^{22} \) | $C_2\times C_2^2:S_4$ (as 12T103) | $[2, 8]$ |
| 12.0.131621703842267136.61 | x12 - 24x6 + 108x4 - 162x2 + 81 | \( 2^{22}\cdot 3^{22} \) | $C_2\times C_2^2:S_4$ (as 12T103) | $[2, 8]$ |
| 12.0.137277082725750313.1 | x12 - 2x11 + 7x10 - 12x9 + 27x8 - 37x7 + 65x6 - 74x5 + 108x4 - 96x3 + 112x2 - 64x + 64 | \( 769^{2}\cdot 3253^{2}\cdot 21937 \) | 12T293 | $[11]$ |
| 12.0.141917814705923001.1 | x12 - 4x11 + 11x10 - 25x9 + 50x8 - 84x7 + 125x6 - 168x5 + 200x4 - 200x3 + 176x2 - 128x + 64 | \( 3^{2}\cdot 449\cdot 5926169^{2} \) | 12T293 | $[18]$ |
| 12.0.142663603866837857.1 | x12 - 2x11 + 5x10 - 7x9 + 16x8 - 22x7 + 41x6 - 44x5 + 64x4 - 56x3 + 80x2 - 64x + 64 | \( 997^{2}\cdot 3709^{2}\cdot 10433 \) | 12T293 | $[12]$ |
| 12.0.144555105949057024.1 | x12 - 6x10 + 28x8 + 6x6 + 28x4 - 6x2 + 1 | \( 2^{20}\cdot 13^{10} \) | $C_2 \times S_4$ (as 12T23) | $[12]$ |
| 12.0.144555105949057024.2 | x12 + 6x10 + 28x8 - 6x6 + 28x4 + 6x2 + 1 | \( 2^{20}\cdot 13^{10} \) | $C_2 \times S_4$ (as 12T24) | $[2, 6]$ |
| 12.0.144555105949057024.3 | x12 + 7x10 + 28x8 + 45x6 + 28x4 + 7x2 + 1 | \( 2^{20}\cdot 13^{10} \) | $C_2 \times S_4$ (as 12T24) | $[12]$ |
| 12.0.144555105949057024.9 | x12 + 11x10 - 26x9 + 45x8 - 156x7 + 279x6 - 286x5 + 538x4 - 520x3 + 346x2 - 364x + 196 | \( 2^{20}\cdot 13^{10} \) | $C_2\times S_4$ (as 12T21) | $[2, 6]$ |
| 12.0.144555105949057024.10 | x12 - x11 + 2x10 - 12x9 + 28x8 + 36x7 + 184x6 + 264x5 + 500x4 + 524x3 + 584x2 + 416x + 256 | \( 2^{20}\cdot 13^{10} \) | $C_2\times C_4^2:C_3:C_2$ (as 12T95) | $[20]$ |
| 12.0.144869678261310016.1 | x12 - x11 - x10 - 3x8 + 3x7 + 7x6 + 6x5 - 12x4 - 16x2 - 32x + 64 | \( 2^{6}\cdot 7^{6}\cdot 59^{2}\cdot 2351^{2} \) | $S_6\times C_2$ (as 12T219) | $[11]$ |
| 12.0.149650075476775025.1 | x12 - 3x11 + 9x10 - 18x9 + 34x8 - 52x7 + 81x6 - 104x5 + 136x4 - 144x3 + 144x2 - 96x + 64 | \( 5^{2}\cdot 59^{2}\cdot 73^{2}\cdot 521\cdot 787^{2} \) | 12T293 | $[16]$ |
| 12.0.152028237544940457.1 | x12 - 2x11 + 7x10 - 11x9 + 26x8 - 33x7 + 61x6 - 66x5 + 104x4 - 88x3 + 112x2 - 64x + 64 | \( 3^{2}\cdot 199^{2}\cdot 2713\cdot 12539^{2} \) | 12T293 | $[12]$ |
In order to download results, determine the number of results.