Further refine search
Results (displaying matches 1-50 of at least 1000) Next
| Label | Polynomial | Discriminant | Galois group | Class group |
|---|---|---|---|---|
| 12.0.2951578112000000000.1 | x12 - 4x11 + 28x10 - 76x9 + 359x8 - 772x7 + 2662x6 - 4216x5 + 11540x4 - 13284x3 + 37260x2 - 26468x + 52681 | \( 2^{18}\cdot 5^{9}\cdot 7^{8} \) | $C_{12}$ (as 12T1) | $[146]$ |
| 12.0.3741199797824000000.1 | x12 + 33x10 + 388x8 + 2140x6 + 5894x4 + 7762x2 + 3881 | \( 2^{12}\cdot 5^{6}\cdot 3881^{3} \) | 12T235 | $[120]$ |
| 12.0.4970515778063137449.3 | x12 - x11 + 44x10 - 31x9 + 691x8 - 288x7 + 4745x6 - 300x5 + 13879x4 + 9649x3 + 10628x2 + 20959x + 41581 | \( 3^{6}\cdot 7^{10}\cdot 17^{6} \) | $C_6\times C_2$ (as 12T2) | $[130]$ |
| 12.0.5351362262028177408.1 | x12 + 39x10 + 585x8 + 4212x6 + 14742x4 + 22113x2 + 9477 | \( 2^{12}\cdot 3^{6}\cdot 13^{11} \) | $C_{12}$ (as 12T1) | $[2, 2, 26]$ |
| 12.0.6485674202367523969.1 | x12 - 4x11 + 25x10 - 68x9 + 325x8 - 686x7 + 2604x6 - 4075x5 + 13689x4 - 14393x3 + 44782x2 - 23610x + 73319 | \( 13^{10}\cdot 19^{6} \) | $C_6\times C_2$ (as 12T2) | $[117]$ |
| 12.0.7942684196931961856.1 | x12 - x11 + 3x10 - 3x9 + 8x8 - 10x7 + 22x6 - 20x5 + 32x4 - 24x3 + 48x2 - 32x + 64 | \( 2^{10}\cdot 1409\cdot 2346271^{2} \) | 12T293 | $[101]$ |
| 12.0.8822943478336000000.4 | x12 - 2x11 + 21x10 - 32x9 + 279x8 - 358x7 + 2390x6 - 2390x5 + 13837x4 - 9964x3 + 50382x2 - 20104x + 90481 | \( 2^{12}\cdot 5^{6}\cdot 13^{10} \) | $C_6\times C_2$ (as 12T2) | $[4, 4, 8]$ |
| 12.0.9120030452383481856.1 | x12 + x10 + x8 + 9x6 + 4x4 + 16x2 + 64 | \( 2^{20}\cdot 3^{2}\cdot 37^{2}\cdot 163^{4} \) | $C_2^2\times C_2^2:S_4$ (as 12T139) | $[126]$ |
| 12.0.9687897476476640001.1 | x12 - 4x11 + 23x10 - 64x9 + 312x8 - 632x7 + 2493x6 - 3780x5 + 13720x4 - 11802x3 + 50834x2 - 14525x + 89971 | \( 3^{6}\cdot 7^{10}\cdot 19^{6} \) | $C_6\times C_2$ (as 12T2) | $[168]$ |
| 12.0.10331448031704891637.2 | x12 - x11 + x10 - 27x9 + 27x8 - 183x7 + 326x6 + 649x5 + 131x4 - 573x3 + 1782x2 - 2133x + 4941 | \( 7^{8}\cdot 13^{11} \) | $C_{12}$ (as 12T1) | $[111]$ |
| 12.0.13179165217344000000.2 | x12 + 55x10 + 1177x8 + 12263x6 + 63001x4 + 137703x2 + 63001 | \( 2^{12}\cdot 3^{6}\cdot 5^{6}\cdot 7^{10} \) | $C_6\times C_2$ (as 12T2) | $[2, 52]$ |
| 12.0.13179165217344000000.3 | x12 - 2x11 + 19x10 - 26x9 + 260x8 - 364x7 + 2388x6 - 2590x5 + 14491x4 - 13666x3 + 62305x2 - 40136x + 118441 | \( 2^{12}\cdot 3^{6}\cdot 5^{6}\cdot 7^{10} \) | $C_6\times C_2$ (as 12T2) | $[2, 156]$ |
| 12.0.13179165217344000000.5 | x12 - 6x11 + 51x10 - 200x9 + 978x8 - 2778x7 + 9197x6 - 18642x5 + 45309x4 - 62422x3 + 108054x2 - 79542x + 163549 | \( 2^{12}\cdot 3^{6}\cdot 5^{6}\cdot 7^{10} \) | $C_6\times C_2$ (as 12T2) | $[4, 52]$ (GRH) |
| 12.0.13179165217344000000.6 | x12 + 35x10 + 875x8 + 10500x6 + 91875x4 + 306250x2 + 765625 | \( 2^{12}\cdot 3^{6}\cdot 5^{6}\cdot 7^{10} \) | $C_6\times C_2$ (as 12T2) | $[2, 52]$ |
| 12.0.13179165217344000000.7 | x12 + 15x10 + 225x8 + 3375x6 + 50625x4 + 759375x2 + 11390625 | \( 2^{12}\cdot 3^{6}\cdot 5^{6}\cdot 7^{10} \) | $C_6\times C_2$ (as 12T2) | $[2, 52]$ |
| 12.0.13179165217344000000.9 | x12 - 2x11 - x10 - 2x9 + 100x8 - 204x7 + 20x6 - 390x5 + 4243x4 - 5206x3 + 5381x2 + 10088x + 28561 | \( 2^{12}\cdot 3^{6}\cdot 5^{6}\cdot 7^{10} \) | $C_6\times C_2$ (as 12T2) | $[2, 52]$ |
| 12.0.13179165217344000000.10 | x12 - 6x11 + 25x10 - 70x9 + 257x8 - 674x7 + 1805x6 - 3284x5 + 8459x4 - 12124x3 + 24313x2 - 18702x + 48721 | \( 2^{12}\cdot 3^{6}\cdot 5^{6}\cdot 7^{10} \) | $C_6\times C_2$ (as 12T2) | $[2, 52]$ |
| 12.0.13334335014735765625.1 | x12 - 4x11 + 27x10 - 68x9 + 396x8 - 934x7 + 4774x6 - 9889x5 + 37692x4 - 54863x3 + 153377x2 - 115667x + 250879 | \( 5^{6}\cdot 7^{8}\cdot 23^{6} \) | $C_6\times C_2$ (as 12T2) | $[3, 117]$ (GRH) |
| 12.0.14118999709877436672.1 | x12 - x11 + 3x10 - x9 + 4x8 + 10x6 + 16x4 - 8x3 + 48x2 - 32x + 64 | \( 2^{8}\cdot 3^{2}\cdot 113\cdot 7364131^{2} \) | 12T293 | $[102]$ |
| 12.0.14881778037403916432.1 | x12 - x11 + 4x10 - 3x9 + 12x8 - 6x7 + 23x6 - 12x5 + 48x4 - 24x3 + 64x2 - 32x + 64 | \( 2^{4}\cdot 12113\cdot 8762773^{2} \) | 12T293 | $[105]$ |
| 12.0.15110084652576306192.1 | x12 - 2x11 + 4x10 - 5x9 + 6x8 - 5x7 + 11x6 - 10x5 + 24x4 - 40x3 + 64x2 - 64x + 64 | \( 2^{4}\cdot 3^{2}\cdot 1549^{2}\cdot 2657\cdot 4057^{2} \) | 12T293 | $[128]$ |
| 12.0.15484949423558175888.1 | x12 - 2x11 + 6x10 - 9x9 + 20x8 - 25x7 + 45x6 - 50x5 + 80x4 - 72x3 + 96x2 - 64x + 64 | \( 2^{4}\cdot 3^{2}\cdot 1657\cdot 8055869^{2} \) | 12T293 | $[104]$ |
| 12.0.16998231738349085968.1 | x12 - x11 + 4x10 - 3x9 + 10x8 - 6x7 + 23x6 - 12x5 + 40x4 - 24x3 + 64x2 - 32x + 64 | \( 2^{4}\cdot 19^{2}\cdot 10273\cdot 535229^{2} \) | 12T293 | $[107]$ |
| 12.0.17213603549184000000.2 | x12 - 2x11 + 23x10 - 42x9 + 377x8 - 430x7 + 4372x6 - 2306x5 + 32791x4 - 7712x3 + 141770x2 - 16004x + 276121 | \( 2^{18}\cdot 3^{6}\cdot 5^{6}\cdot 7^{8} \) | $C_6\times C_2$ (as 12T2) | $[228]$ (GRH) |
| 12.0.20408004397065968761.1 | x12 - 4x11 + 31x10 - 88x9 + 480x8 - 1046x7 + 4500x6 - 7261x5 + 27052x4 - 29227x3 + 99169x2 - 53803x + 177113 | \( 13^{10}\cdot 23^{6} \) | $C_6\times C_2$ (as 12T2) | $[252]$ |
| 12.0.21303969908600640625.2 | x12 - 4x11 + 43x10 - 112x9 + 748x8 - 1200x7 + 6649x6 - 4588x5 + 36700x4 - 9786x3 + 141674x2 - 70165x + 271181 | \( 5^{6}\cdot 7^{10}\cdot 13^{6} \) | $C_6\times C_2$ (as 12T2) | $[4, 4, 20]$ (GRH) |
| 12.0.22039921152000000000.1 | x12 + 18x10 - 4x9 + 234x8 + 36x7 + 1738x6 + 72x5 + 8355x4 + 3624x3 + 40764x2 + 21732x + 70471 | \( 2^{18}\cdot 3^{16}\cdot 5^{9} \) | $C_{12}$ (as 12T1) | $[218]$ (GRH) |
| 12.0.22435920541265661952.1 | x12 + 3x10 + 8x8 - 2x7 + 18x6 - 4x5 + 32x4 + 48x2 + 64 | \( 2^{12}\cdot 2017\cdot 1647931^{2} \) | 12T293 | $[144]$ |
| 12.0.22579948934773140625.1 | x12 - 4x11 - x10 + 10x9 + 103x8 - 172x7 + 707x6 - 250x5 + 4471x4 - 2724x3 + 17649x2 - 7080x + 35495 | \( 5^{6}\cdot 11^{6}\cdot 13^{8} \) | $C_6\times C_2$ (as 12T2) | $[2, 2, 42]$ |
| 12.0.25735133446455103488.1 | x12 - 2x11 + 3x10 - 2x9 + 2x8 + 4x7 - 6x6 + 8x5 + 8x4 - 16x3 + 48x2 - 64x + 64 | \( 2^{12}\cdot 3^{2}\cdot 313\cdot 1493447^{2} \) | 12T293 | $[110]$ (GRH) |
| 12.0.26345168059215642624.1 | x12 - 2x11 + 27x10 - 42x9 + 419x8 - 538x7 + 4136x6 - 4132x5 + 26950x4 - 19172x3 + 108501x2 - 42258x + 211303 | \( 2^{18}\cdot 3^{6}\cdot 13^{10} \) | $C_6\times C_2$ (as 12T2) | $[2, 182]$ (GRH) |
| 12.0.26345168059215642624.7 | x12 + 14x10 + 8x8 - 888x6 - 384x4 + 10624x2 + 40000 | \( 2^{18}\cdot 3^{6}\cdot 13^{10} \) | $C_6\times C_2$ (as 12T2) | $[104]$ |
| 12.0.26859533924753868137.1 | x12 + 3x10 - x9 + 7x8 - 5x7 + 17x6 - 10x5 + 28x4 - 8x3 + 48x2 + 64 | \( 79^{2}\cdot 6833\cdot 793627^{2} \) | 12T293 | $[141]$ (GRH) |
| 12.0.27927616772217573376.3 | x12 + 15x10 + 169x8 + 1527x6 + 8625x4 + 26083x2 + 32761 | \( 2^{12}\cdot 7^{10}\cdot 17^{6} \) | $C_6\times C_2$ (as 12T2) | $[3, 60]$ (GRH) |
| 12.0.29218823485775015625.1 | x12 - 6x11 + 45x10 - 150x9 + 636x8 - 1230x7 + 3551x6 - 2436x5 + 14157x4 - 6522x3 + 61566x2 - 50892x + 94429 | \( 3^{18}\cdot 5^{6}\cdot 13^{6} \) | $C_6\times C_2$ (as 12T2) | $[152]$ (GRH) |
| 12.0.30484209987928082169.1 | x12 - 4x11 + 29x10 - 84x9 + 461x8 - 976x7 + 4353x6 - 6772x5 + 27208x4 - 25046x3 + 110223x2 - 37447x + 213487 | \( 3^{6}\cdot 7^{10}\cdot 23^{6} \) | $C_6\times C_2$ (as 12T2) | $[234]$ (GRH) |
| 12.0.30705314996019351568.1 | x12 - x11 + 3x10 - 2x9 + 9x8 - 5x7 + 17x6 - 10x5 + 36x4 - 16x3 + 48x2 - 32x + 64 | \( 2^{4}\cdot 59^{2}\cdot 7297\cdot 274867^{2} \) | 12T293 | $[173]$ (GRH) |
| 12.0.31643295525096890625.1 | x12 + 9x10 - 4x9 + 183x8 + 36x7 + 2281x6 + 1200x5 + 17949x4 + 5580x3 + 77817x2 + 5118x + 156329 | \( 3^{16}\cdot 5^{6}\cdot 19^{6} \) | $C_6\times C_2$ (as 12T2) | $[2, 2, 2, 2, 12]$ |
| 12.0.33103510137573028416.1 | x12 - x11 + 4x10 - 5x9 + 10x8 - 16x7 + 23x6 - 32x5 + 40x4 - 40x3 + 64x2 - 32x + 64 | \( 2^{6}\cdot 3^{2}\cdot 569\cdot 10050083^{2} \) | 12T293 | $[120]$ (GRH) |
| 12.0.33620319432000000000.1 | x12 - 4x11 + 43x10 - 126x9 + 814x8 - 1852x7 + 8517x6 - 14386x5 + 51505x4 - 61084x3 + 200870x2 - 138098x + 354061 | \( 2^{12}\cdot 3^{6}\cdot 5^{9}\cdot 7^{8} \) | $C_{12}$ (as 12T1) | $[2, 194]$ (GRH) |
| 12.0.33695156183620386816.59 | x12 + 12x10 - 12x8 + 64x6 - 48x4 + 192x2 + 64 | \( 2^{30}\cdot 3^{22} \) | $C_2\times C_2^2:S_4$ (as 12T103) | $[2, 2, 28]$ |
| 12.0.34644013976823922064.1 | x12 + 4x10 - x9 + 10x8 - 5x7 + 21x6 - 10x5 + 40x4 - 8x3 + 64x2 + 64 | \( 2^{4}\cdot 11489\cdot 13728181^{2} \) | 12T293 | $[130]$ (GRH) |
| 12.0.34896906600120140625.1 | x12 - 3x11 + 9x10 + 46x9 - 48x8 + 312x7 + 371x6 + 171x5 - 3597x4 + 14402x3 + 31740x2 - 122784x + 161344 | \( 3^{18}\cdot 5^{6}\cdot 7^{8} \) | $C_6\times C_2$ (as 12T2) | $[111]$ |
| 12.0.36099543110378323968.1 | x12 - 4x11 + 34x10 - 96x9 + 487x8 - 1060x7 + 3402x6 - 5164x5 + 10378x4 - 10924x3 + 38696x2 - 30344x + 53857 | \( 2^{33}\cdot 3^{6}\cdot 7^{8} \) | $C_{12}$ (as 12T1) | $[194]$ (GRH) |
| 12.0.37435196904948681689.1 | x12 - x11 + 3x10 - 2x9 + 6x8 - 8x7 + 19x6 - 16x5 + 24x4 - 16x3 + 48x2 - 32x + 64 | \( 47\cdot 103^{3}\cdot 853759^{2} \) | 12T293 | $[102]$ (GRH) |
| 12.0.38303288464389083136.1 | x12 + 9x10 + 132x8 + 2011x6 + 14085x4 + 44814x2 + 54289 | \( 2^{12}\cdot 3^{18}\cdot 17^{6} \) | $C_6\times C_2$ (as 12T2) | $[4, 4, 12]$ (GRH) |
| 12.0.39032490004709953424.1 | x12 - x11 - x10 + 7x8 - 3x7 - 5x6 - 6x5 + 28x4 - 16x2 - 32x + 64 | \( 2^{4}\cdot 163^{2}\cdot 569\cdot 401707^{2} \) | 12T293 | $[130]$ (GRH) |
| 12.0.39450497360817629200.1 | x12 - x11 + 4x10 - 5x9 + 10x8 - 12x7 + 23x6 - 24x5 + 40x4 - 40x3 + 64x2 - 32x + 64 | \( 2^{4}\cdot 5^{2}\cdot 31\cdot 223\cdot 3777139^{2} \) | 12T293 | $[134]$ (GRH) |
| 12.0.42276719146699894672.1 | x12 - x11 + 3x10 - 2x9 + 7x8 - 5x7 + 19x6 - 10x5 + 28x4 - 16x3 + 48x2 - 32x + 64 | \( 2^{4}\cdot 6217\cdot 20615801^{2} \) | 12T293 | $[117]$ (GRH) |
| 12.0.42528831343005192192.1 | x12 + 38x10 + 562x8 + 4042x6 + 14204x4 + 20475x2 + 5397 | \( 2^{12}\cdot 3^{3}\cdot 7^{3}\cdot 257^{5} \) | $C_4^2.D_{12}$ (as 12T151) | $[2, 2, 42]$ |
In order to download results, determine the number of results.