Note: Search results may be incomplete. Given $p$-adic completions contain an unramified field and completions are only searched for ramified primes.
Refine search
Label | Polynomial | Discriminant | Galois group | Class group |
---|---|---|---|---|
6.0.18515.1 | $x^{6} + 2 x^{4} - x^{3} + 2 x^{2} + 1$ | $-\,5\cdot 7\cdot 23^{2}$ | $S_4\times C_2$ (as 6T11) | trivial |
6.2.41069.1 | $x^{6} - 2 x^{4} + 2 x^{2} - x - 1$ | $7\cdot 5867$ | $S_6$ (as 6T16) | trivial |
6.0.54208.1 | $x^{6} - 2 x^{5} + 3 x^{4} - 2 x^{3} + 3 x^{2} - 2 x + 1$ | $-\,2^{6}\cdot 7\cdot 11^{2}$ | $S_4\times C_2$ (as 6T11) | trivial |
6.0.54691.1 | $x^{6} - x^{5} - 2 x^{3} + 2 x^{2} + 1$ | $-\,7\cdot 13\cdot 601$ | $S_6$ (as 6T16) | trivial |
6.0.61131.1 | $x^{6} - x^{5} - x^{4} + x^{2} + 1$ | $-\,3\cdot 7\cdot 41\cdot 71$ | $S_6$ (as 6T16) | trivial |
6.0.80192.1 | $x^{6} - 2 x^{5} + x^{4} + 2 x^{2} - 2 x + 1$ | $-\,2^{6}\cdot 7\cdot 179$ | $S_6$ (as 6T16) | trivial |
6.2.85169.1 | $x^{6} - 3 x^{4} - 2 x^{3} + 6 x^{2} - 2 x - 1$ | $7\cdot 23^{3}$ | $S_4\times C_2$ (as 6T11) | trivial |
6.0.92575.1 | $x^{6} - x^{5} + x^{4} + x^{3} - x^{2} + x + 5$ | $-\,5^{2}\cdot 7\cdot 23^{2}$ | $S_4\times C_2$ (as 6T11) | trivial |
6.2.97909.1 | $x^{6} - x^{5} + 2 x^{3} - x^{2} - 3 x - 1$ | $7\cdot 71\cdot 197$ | $S_6$ (as 6T16) | trivial |
6.2.116053.1 | $x^{6} - x^{3} - 2 x^{2} - 1$ | $7\cdot 59\cdot 281$ | $S_6$ (as 6T16) | trivial |
6.0.129647.1 | $x^{6} - x^{5} + x^{4} - x^{3} + x^{2} + x + 1$ | $-\,7\cdot 18521$ | $S_6$ (as 6T16) | trivial |
6.0.137011.1 | $x^{6} - 2 x^{4} - 4 x^{3} + 7 x + 5$ | $-\,7\cdot 23^{2}\cdot 37$ | $S_4\times C_2$ (as 6T11) | trivial |
6.2.143773.1 | $x^{6} - 2 x^{5} + x^{4} - 2 x^{3} + 3 x^{2} - 3 x + 1$ | $7\cdot 19\cdot 23\cdot 47$ | $S_6$ (as 6T16) | trivial |
6.2.149849.1 | $x^{6} - x^{5} - 2 x^{4} - x^{3} + 3 x^{2} + x + 1$ | $7\cdot 21407$ | $S_6$ (as 6T16) | trivial |
6.2.153461.1 | $x^{6} - x^{5} - x^{4} + 4 x^{3} - 5 x^{2} + 4 x - 1$ | $7\cdot 11\cdot 1993$ | $S_6$ (as 6T16) | trivial |
6.2.162589.1 | $x^{6} - 2 x^{4} - x^{3} + 2 x^{2} + 2 x - 1$ | $7\cdot 23227$ | $S_6$ (as 6T16) | trivial |
6.0.165263.1 | $x^{6} - 2 x^{5} + 3 x^{4} - 5 x^{3} + 5 x^{2} - 3 x + 2$ | $-\,7\cdot 23609$ | $S_6$ (as 6T16) | trivial |
6.0.176176.1 | $x^{6} - x^{5} + 4 x^{4} - x^{3} + 4 x^{2} - x + 1$ | $-\,2^{4}\cdot 7\cdot 11^{2}\cdot 13$ | $S_4\times C_2$ (as 6T11) | trivial |
6.0.178367.1 | $x^{6} - x^{5} + 2 x^{4} - 3 x^{3} + 3 x^{2} - x + 2$ | $-\,7\cdot 83\cdot 307$ | $S_6$ (as 6T16) | trivial |
6.0.198331.1 | $x^{6} - 3 x^{5} + 6 x^{4} - 6 x^{3} + 3 x^{2} - x + 1$ | $-\,7\cdot 29\cdot 977$ | $S_6$ (as 6T16) | trivial |
6.2.204169.1 | $x^{6} - x^{5} - 2 x^{4} + 5 x^{3} - x^{2} - 3 x + 2$ | $7\cdot 29167$ | $S_6$ (as 6T16) | trivial |
6.2.213549.1 | $x^{6} - x^{5} + 2 x^{4} + x^{2} + 3 x + 1$ | $3\cdot 7\cdot 10169$ | $S_6$ (as 6T16) | trivial |
6.0.214088.1 | $x^{6} - x^{5} + 2 x^{2} - x + 1$ | $-\,2^{3}\cdot 7\cdot 3823$ | $S_6$ (as 6T16) | trivial |
6.2.214697.1 | $x^{6} + x^{4} - x^{3} - 3 x^{2} + 1$ | $7\cdot 30671$ | $S_6$ (as 6T16) | trivial |
6.4.216587.1 | $x^{6} - x^{5} - x^{4} - 2 x^{3} - 2 x^{2} + 3 x + 1$ | $-\,7\cdot 30941$ | $S_6$ (as 6T16) | trivial |
6.2.216832.1 | $x^{6} - 2 x^{5} + 2 x^{4} - 6 x^{3} + 2 x^{2} + 4 x - 2$ | $2^{8}\cdot 7\cdot 11^{2}$ | $S_4\times C_2$ (as 6T11) | trivial |
6.2.218477.2 | $x^{6} + x^{4} - 2 x^{3} - 3 x^{2} - 11 x - 5$ | $7\cdot 23^{2}\cdot 59$ | $S_4\times C_2$ (as 6T11) | trivial |
6.0.227248.1 | $x^{6} - x^{5} - 2 x^{4} + x^{3} + 2 x^{2} + x + 1$ | $-\,2^{4}\cdot 7\cdot 2029$ | $S_6$ (as 6T16) | trivial |
6.2.227829.1 | $x^{6} - x^{5} - 2 x^{4} + 2 x^{3} - 2 x - 1$ | $3\cdot 7\cdot 19\cdot 571$ | $S_6$ (as 6T16) | trivial |
6.0.230384.1 | $x^{6} - 3 x^{5} + x^{4} + 3 x^{3} - 2 x^{2} + 2$ | $-\,2^{4}\cdot 7\cdot 11^{2}\cdot 17$ | $S_4\times C_2$ (as 6T11) | trivial |
6.2.234892.1 | $x^{6} - x^{5} - 2 x^{3} + x^{2} - 2 x + 2$ | $2^{2}\cdot 7\cdot 8389$ | $S_6$ (as 6T16) | trivial |
6.0.236992.1 | $x^{6} + x^{4} - x^{2} + 7$ | $-\,2^{6}\cdot 7\cdot 23^{2}$ | $S_4\times C_2$ (as 6T11) | trivial |
6.2.236992.2 | $x^{6} - x^{4} - x^{2} - 7$ | $2^{6}\cdot 7\cdot 23^{2}$ | $S_4\times C_2$ (as 6T11) | trivial |
6.0.240667.1 | $x^{6} + 3 x^{4} - 3 x^{3} + 4 x^{2} - 3 x + 1$ | $-\,7\cdot 34381$ | $S_6$ (as 6T16) | trivial |
6.0.241451.1 | $x^{6} - x^{3} + 2 x^{2} + 2 x + 1$ | $-\,7\cdot 17\cdot 2029$ | $S_6$ (as 6T16) | trivial |
6.2.248101.1 | $x^{6} - x^{5} - 4 x^{4} + 6 x^{3} + 8 x^{2} - 4 x - 5$ | $7\cdot 23^{2}\cdot 67$ | $S_4\times C_2$ (as 6T11) | trivial |
6.0.252868.1 | $x^{6} - x^{5} - x^{4} + x^{3} - x^{2} + 2$ | $-\,2^{2}\cdot 7\cdot 11\cdot 821$ | $S_6$ (as 6T16) | trivial |
6.2.262864.1 | $x^{6} - x^{5} - x^{3} + 2 x^{2} - 3 x - 1$ | $2^{4}\cdot 7\cdot 2347$ | $S_6$ (as 6T16) | trivial |
6.4.269395.1 | $x^{6} - x^{5} - 2 x^{4} + 2 x + 1$ | $-\,5\cdot 7\cdot 43\cdot 179$ | $S_6$ (as 6T16) | trivial |
6.0.273791.1 | $x^{6} - 3 x^{5} + 5 x^{4} - 3 x^{3} - 2 x^{2} + 2 x + 1$ | $-\,7\cdot 39113$ | $S_6$ (as 6T16) | trivial |
6.0.276416.1 | $x^{6} - 2 x^{5} + 3 x^{4} - 2 x^{3} + 2 x^{2} + 2$ | $-\,2^{6}\cdot 7\cdot 617$ | $S_6$ (as 6T16) | trivial |
6.0.282863.1 | $x^{6} - 2 x^{5} + 2 x^{4} - x^{3} + x^{2} + x + 1$ | $-\,7\cdot 17\cdot 2377$ | $S_6$ (as 6T16) | trivial |
6.0.283311.1 | $x^{6} - 2 x^{5} + 5 x^{4} - 6 x^{3} + 8 x^{2} - 5 x + 2$ | $-\,3^{3}\cdot 7\cdot 1499$ | $S_6$ (as 6T16) | trivial |
6.2.283801.1 | $x^{6} - x^{5} - x^{4} - 2 x - 1$ | $7\cdot 40543$ | $S_6$ (as 6T16) | trivial |
6.2.298256.1 | $x^{6} - x^{5} - 3 x^{4} + 2 x^{3} + 4 x^{2} - 2$ | $2^{4}\cdot 7\cdot 2663$ | $S_6$ (as 6T16) | trivial |
6.0.298816.1 | $x^{6} - 2 x^{5} + 3 x^{4} - 4 x^{3} + 2 x^{2} + 1$ | $-\,2^{6}\cdot 7\cdot 23\cdot 29$ | $S_6$ (as 6T16) | trivial |
6.2.301133.1 | $x^{6} + 3 x^{4} + x^{2} - 3 x + 1$ | $7\cdot 43019$ | $S_6$ (as 6T16) | trivial |
6.0.304108.1 | $x^{6} - x^{5} + 4 x^{4} - x^{3} + 4 x^{2} + 2 x + 1$ | $-\,2^{2}\cdot 7\cdot 10861$ | $S_6$ (as 6T16) | trivial |
6.2.306341.1 | $x^{6} - x^{5} - 2 x^{4} + 3 x^{3} - x^{2} - 1$ | $7\cdot 107\cdot 409$ | $S_6$ (as 6T16) | trivial |
6.0.311647.1 | $x^{6} + x^{4} - 3 x^{3} + x^{2} + 1$ | $-\,7\cdot 211^{2}$ | $S_4\times C_2$ (as 6T11) | trivial |