Learn more

Note: Search results may be incomplete. Given $p$-adic completions contain an unramified field and completions are only searched for ramified primes.

Refine search


Results (1-50 of 75 matches)

Next   displayed columns for results
Label Polynomial Discriminant Galois group Class group Regulator
11.3.193...005.1 $x^{11} + 2541 x^{5} - 14641 x^{4} + 41503$ $5\cdot 7^{8}\cdot 11^{20}$ $S_{11}$ (as 11T8) trivial $13728758739.8$
13.1.3518110599125.1 $x^{13} + x^{11} - 2 x^{10} + x^{9} - x^{8} - 4 x^{7} + 4 x^{6} - 5 x^{5} + x^{4} + 2 x^{3} - 4 x^{2} + 2 x - 1$ $5^{3}\cdot 5351\cdot 5259743$ $S_{13}$ (as 13T9) trivial $6.17827465513$
13.1.10905397816000.1 $x^{13} - 3 x^{12} + 8 x^{11} - 12 x^{10} + 15 x^{9} - 12 x^{8} + 6 x^{7} + x^{6} - 6 x^{5} + 8 x^{4} - 6 x^{3} + 5 x^{2} - x + 1$ $2^{6}\cdot 5^{3}\cdot 26141\cdot 52147$ $S_{13}$ (as 13T9) trivial $12.5128995808$
13.1.29747917088000.1 $x^{13} - 4 x^{12} + 10 x^{11} - 20 x^{10} + 30 x^{9} - 40 x^{8} + 44 x^{7} - 43 x^{6} + 38 x^{5} - 31 x^{4} + 24 x^{3} - 16 x^{2} + 8 x - 2$ $2^{8}\cdot 5^{3}\cdot 139\cdot 6687931$ $S_{13}$ (as 13T9) trivial $36.4190725607$
13.1.48103150106125.1 $x^{13} - 2 x^{12} + 4 x^{10} - 3 x^{9} - 5 x^{8} + 7 x^{7} + x^{6} - 8 x^{5} + 3 x^{4} + 5 x^{3} - 3 x^{2} - x + 2$ $5^{3}\cdot 83\cdot 4636448203$ $S_{13}$ (as 13T9) trivial $47.5944591354$
13.3.53877019237375.1 $x^{13} - 2 x^{12} - 4 x^{11} + 7 x^{10} + 6 x^{9} - 6 x^{8} - 6 x^{7} - 8 x^{6} + 8 x^{5} + 15 x^{4} - 7 x^{3} - 7 x^{2} + x + 1$ $-\,5^{3}\cdot 204793\cdot 2104643$ $S_{13}$ (as 13T9) trivial $39.9707034173$
13.3.69188908404875.1 $x^{13} - 3 x^{12} + 3 x^{11} - 3 x^{10} + 5 x^{9} + 2 x^{8} - 17 x^{7} + 10 x^{6} + 16 x^{5} - 16 x^{4} - 5 x^{3} + 7 x^{2} - 1$ $-\,5^{3}\cdot 7^{5}\cdot 31\cdot 1062367$ $S_{13}$ (as 13T9) trivial $49.3240960032$
13.3.134713017952000.1 $x^{13} - 5 x^{12} + 15 x^{11} - 34 x^{10} + 56 x^{9} - 79 x^{8} + 85 x^{7} - 78 x^{6} + 53 x^{5} - 25 x^{4} + 6 x^{3} + 4 x^{2} - 2 x + 1$ $-\,2^{8}\cdot 5^{3}\cdot 4209781811$ $S_{13}$ (as 13T9) trivial $115.220069967$
13.3.156408138976000.1 $x^{13} - 3 x^{12} + 3 x^{11} - 4 x^{10} + 4 x^{9} + 7 x^{8} - 20 x^{7} + 27 x^{6} - 35 x^{5} + 41 x^{4} - 36 x^{3} + 24 x^{2} - 12 x + 4$ $-\,2^{8}\cdot 5^{3}\cdot 137\cdot 599\cdot 59561$ $S_{13}$ (as 13T9) trivial $127.407170199$
13.3.1990387975424000.1 $x^{13} - x^{12} - 4 x^{11} - 2 x^{10} + 6 x^{9} + 3 x^{8} - x^{7} - 6 x^{6} + x^{4} + x^{3} - 12 x^{2} - 3 x + 1$ $-\,2^{11}\cdot 5^{3}\cdot 84089\cdot 92461$ $S_{13}$ (as 13T9) trivial $942.961496704$
13.3.71106764206294000.1 $x^{13} - 2 x^{12} - x^{11} + 4 x^{10} + 4 x^{9} + 5 x^{8} - 27 x^{7} - 6 x^{6} - 16 x^{5} + 80 x^{4} + 27 x^{3} - 13 x^{2} - 84 x - 36$ $-\,2^{4}\cdot 5^{3}\cdot 241\cdot 147524407067$ $S_{13}$ (as 13T9) trivial $12644.711746$
14.0.860...920.1 $x^{14} - 2 x + 2$ $-\,2^{14}\cdot 5\cdot 23\cdot 4363\cdot 93703\cdot 111733$ $S_{14}$ (as 14T63) trivial $45781.1935337$
14.2.110...680.1 $x^{14} - 10 x^{6} - 10 x^{3} - 4 x - 2$ $2^{16}\cdot 3\cdot 5\cdot 24967\cdot 4517632501$ $S_{14}$ (as 14T63) trivial $72965.8508871$
14.0.177...915.1 $x^{14} - x + 3$ $-\,5\cdot 30931193\cdot 114551855502431$ $S_{14}$ (as 14T63) trivial $668154.940798$
14.2.813...440.1 $x^{14} - 4 x - 2$ $2^{27}\cdot 3\cdot 5\cdot 17\cdot 31\cdot 76714539691$ $S_{14}$ (as 14T63) trivial $2957011.70752$
14.0.932...440.1 $x^{14} - 4 x + 8$ $-\,2^{12}\cdot 5\cdot 11\cdot 18313\cdot 84551\cdot 267224171$ $S_{14}$ (as 14T63) trivial $2710415.55319$
14.2.237...120.1 $x^{14} - 6 x + 3$ $2^{15}\cdot 3^{13}\cdot 5\cdot 90794709670391$ $S_{14}$ (as 14T63) trivial $57684199.0706$
14.2.237...360.1 $x^{14} - 6 x - 2$ $2^{14}\cdot 5\cdot 12739\cdot 22743508936429147$ $S_{14}$ (as 14T63) trivial $36875727.1745$
14.2.169...760.1 $x^{14} - 2 x - 8$ $2^{12}\cdot 5\cdot 17\cdot 31\cdot 3761\cdot 4180381614614671$ $S_{14}$ (as 14T63) trivial $280773703.422$
14.2.205...965.1 $x^{14} - 7 x - 3$ $5\cdot 7^{14}\cdot 11\cdot 33623\cdot 163795469$ $S_{14}$ (as 14T63) trivial $147942156.473$
14.0.871...715.1 $x^{14} - 7 x + 7$ $-\,3\cdot 5\cdot 7^{14}\cdot 67\cdot 283\cdot 3727\cdot 1211827$ $S_{14}$ (as 14T63) $[2]$ $72940786.0692$
14.0.107...355.1 $x^{14} - 3 x + 7$ $-\,5\cdot 2129\cdot 204931\cdot 493529492239158229$ $S_{14}$ (as 14T63) trivial $152674140.366$
14.0.107...360.1 $x^{14} - 2 x + 7$ $-\,2^{15}\cdot 3\cdot 5\cdot 229\cdot 5659\cdot 1690248843237413$ $S_{14}$ (as 14T63) trivial $327117591.886$
14.2.107...765.1 $x^{14} - x - 7$ $5\cdot 167\cdot 1657\cdot 778140528814030493687$ $S_{14}$ (as 14T63) trivial $264583269.722$
14.2.107...880.1 $x^{14} - 4 x - 7$ $2^{14}\cdot 5\cdot 101929\cdot 89344753\cdot 1443254947$ $S_{14}$ (as 14T63) trivial $292983219.734$
14.2.133...240.1 $x^{14} - 8 x + 2$ $2^{27}\cdot 5\cdot 11\cdot 59\cdot 307\cdot 28081\cdot 354770777$ $S_{14}$ (as 14T63) trivial $249718463.726$
14.2.133...480.1 $x^{14} - 8 x - 3$ $2^{14}\cdot 5\cdot 167\cdot 36209029\cdot 2689093360333$ $S_{14}$ (as 14T63) trivial $686321190.478$
14.0.152...480.1 $x^{14} - 6 x + 8$ $-\,2^{12}\cdot 5\cdot 293\cdot 1039\cdot 244004924113840013$ $S_{14}$ (as 14T63) trivial $951832038.935$
14.0.610...955.1 $x^{14} - x + 8$ $-\,5\cdot 19\cdot 28279\cdot 1181153\cdot 1925167492831147$ $S_{14}$ (as 14T63) trivial $784593033.47$
14.2.610...365.1 $x^{14} - 3 x - 8$ $5\cdot 43\cdot 337\cdot 18959\cdot 165297779\cdot 26903676223$ $S_{14}$ (as 14T63) trivial $851024891.79$
14.2.692...965.1 $x^{14} - 9 x + 3$ $3^{13}\cdot 5\cdot 19\cdot 31\cdot 255053\cdot 5785828481723$ $S_{14}$ (as 14T63) trivial $586657278.452$
14.2.692...205.1 $x^{14} - 9 x - 2$ $5\cdot 149\cdot 5653\cdot 110325469\cdot 14912404564037$ $S_{14}$ (as 14T63) trivial $1038828467.87$
14.2.800...645.1 $x^{14} - 9 x - 7$ $5\cdot 9017005487003\cdot 177563212305643$ $S_{14}$ (as 14T63) trivial $866921283.739$
15.15.596...600.1 $x^{15} - 90 x^{13} - 47 x^{12} + 2943 x^{11} + 3150 x^{10} - 41059 x^{9} - 67689 x^{8} + 208050 x^{7} + 505457 x^{6} - 128169 x^{5} - 1147200 x^{4} - 1017822 x^{3} - 210555 x^{2} + 90450 x + 31060$ $2^{6}\cdot 3^{20}\cdot 5^{2}\cdot 11^{6}\cdot 29\cdot 113^{6}$ $S_3\wr A_5$ (as 15T90) trivial $2965720678830$
18.0.629...000.1 $x^{18} - 18 x^{16} - 6 x^{15} + 135 x^{14} + 90 x^{13} - 522 x^{12} - 540 x^{11} + 999 x^{10} + 1652 x^{9} - 486 x^{8} - 2718 x^{7} - 1407 x^{6} + 2322 x^{5} + 2610 x^{4} - 864 x^{3} - 1728 x^{2} + 512$ $-\,2^{26}\cdot 3^{36}\cdot 5^{4}$ $D_9^2:S_3$ (as 18T353) trivial $209810939.038$
18.8.845...375.1 $x^{18} - 45 x^{16} - 30 x^{15} + 549 x^{14} + 540 x^{13} - 2112 x^{12} + 180 x^{11} + 9837 x^{10} + 16372 x^{9} + 10152 x^{8} - 90828 x^{7} + 17655 x^{6} + 537678 x^{5} + 45054 x^{4} - 995568 x^{3} - 739215 x^{2} - 161190 x - 2593$ $-\,3^{36}\cdot 5^{3}\cdot 19^{7}\cdot 71^{2}$ $C_3^6.C_2\wr C_6$ (as 18T858) trivial $1514168250.72$
18.6.130...000.1 $x^{18} - 30 x^{16} - 24 x^{15} + 477 x^{14} + 1536 x^{13} - 4154 x^{12} - 15372 x^{11} + 17367 x^{10} + 55832 x^{9} - 82530 x^{8} - 73584 x^{7} + 325255 x^{6} - 55440 x^{5} - 446838 x^{4} + 398356 x^{3} - 16380 x^{2} - 598920 x + 59248$ $2^{12}\cdot 3^{27}\cdot 5^{3}\cdot 7^{14}\cdot 17^{3}$ $C_3^5:\SOPlus(4,2)$ (as 18T600) $[3]$ $57653159644.9$
18.6.130...000.2 $x^{18} - 30 x^{16} - 20 x^{15} + 369 x^{14} + 492 x^{13} - 2752 x^{12} - 5832 x^{11} + 12636 x^{10} + 43200 x^{9} - 10368 x^{8} - 161856 x^{7} - 157008 x^{6} + 165312 x^{5} + 490560 x^{4} + 476672 x^{3} + 241920 x^{2} + 64512 x + 7168$ $2^{12}\cdot 3^{27}\cdot 5^{3}\cdot 7^{14}\cdot 17^{3}$ $C_3^5:\SOPlus(4,2)$ (as 18T600) $[3]$ $24567917072.0$
18.6.950...000.1 $x^{18} - 36 x^{16} - 24 x^{15} + 432 x^{14} + 576 x^{13} - 2088 x^{12} - 3888 x^{11} + 4284 x^{10} + 10240 x^{9} - 5040 x^{7} - 13530 x^{6} - 32832 x^{5} + 9576 x^{4} + 63360 x^{3} + 7128 x^{2} - 1152 x - 1088$ $2^{49}\cdot 3^{38}\cdot 5^{3}$ $C_3^6:(C_2^3:S_4)$ (as 18T822) trivial $484266827745$
18.4.146...375.1 $x^{18} - 9 x^{17} - 23 x^{16} + 300 x^{15} + 515 x^{14} - 4561 x^{13} - 10821 x^{12} + 31931 x^{11} + 128094 x^{10} - 8849 x^{9} - 656070 x^{8} - 1052332 x^{7} + 297296 x^{6} + 3208702 x^{5} + 5247365 x^{4} + 4745832 x^{3} + 2696725 x^{2} + 963650 x + 201125$ $-\,5^{3}\cdot 7^{12}\cdot 41^{4}\cdot 419^{3}\cdot 449^{4}$ $C_3^6.C_2\wr C_6$ (as 18T858) trivial $625949725971$
18.6.182...125.1 $x^{18} - 6 x^{17} + 83 x^{16} - 303 x^{15} + 1868 x^{14} - 5112 x^{13} + 3450 x^{12} - 16365 x^{11} - 158036 x^{10} + 756829 x^{9} - 2172674 x^{8} + 7909208 x^{7} - 17310950 x^{6} + 32536153 x^{5} - 56610364 x^{4} + 55766189 x^{3} - 33036927 x^{2} + 22791770 x - 9485596$ $5^{3}\cdot 23^{6}\cdot 53^{2}\cdot 79^{6}\cdot 229^{6}$ $C_3^6.C_2^4:S_4$ (as 18T863) trivial $15611149043400$
18.10.457...000.1 $x^{18} + 6 x^{16} - 2 x^{15} - 2169 x^{14} + 1446 x^{13} - 32533 x^{12} + 32292 x^{11} - 57096 x^{10} + 62972 x^{9} + 133380 x^{8} - 266916 x^{7} + 305149 x^{6} - 307242 x^{5} + 215475 x^{4} - 91936 x^{3} + 22815 x^{2} - 3042 x + 169$ $2^{18}\cdot 3^{21}\cdot 5^{3}\cdot 7^{13}\cdot 13^{10}$ $C_3^6:(C_2^3:A_4)$ (as 18T748) trivial $35096271656200$
18.2.713...625.1 $x^{18} - 18 x^{16} + 135 x^{14} - 546 x^{12} + 1287 x^{10} - 236 x^{9} - 1782 x^{8} + 2124 x^{7} + 1386 x^{6} - 6372 x^{5} - 540 x^{4} + 7080 x^{3} + 81 x^{2} - 2124 x + 548$ $3^{36}\cdot 5^{4}\cdot 11^{9}\cdot 19^{9}$ $D_9^2:C_6$ (as 18T338) trivial $511860458032000$
18.0.190...875.1 $x^{18} - 2 x^{17} - 27 x^{16} - 81 x^{15} + 357 x^{14} + 2314 x^{13} + 4922 x^{12} - 14851 x^{11} - 100104 x^{10} - 182734 x^{9} + 306874 x^{8} + 2105046 x^{7} + 4428199 x^{6} + 527321 x^{5} - 14345283 x^{4} - 19562857 x^{3} + 44005986 x^{2} + 71077904 x + 253965368$ $-\,5^{3}\cdot 7^{12}\cdot 71^{3}\cdot 67559689^{3}$ $C_3^6.C_2\wr C_6$ (as 18T858) $[3462]$ $5191867755.7$
18.6.237...500.1 $x^{18} - 6 x^{17} + 9 x^{16} + 245 x^{15} - 1205 x^{14} + 1169 x^{13} + 14264 x^{12} - 51011 x^{11} + 21131 x^{10} + 92545 x^{9} - 39144 x^{8} - 96153 x^{7} - 120363 x^{6} + 273587 x^{5} + 142900 x^{4} - 81721 x^{3} - 251820 x^{2} - 138655 x - 21773$ $2^{2}\cdot 5^{3}\cdot 7^{6}\cdot 229^{6}\cdot 2557^{6}$ $C_3^6.C_2^4:S_4$ (as 18T863) trivial $433284734643000$
18.14.156...125.1 $x^{18} - 7 x^{17} - 186 x^{16} + 1723 x^{15} + 10520 x^{14} - 148030 x^{13} - 128075 x^{12} + 6238341 x^{11} - 9179842 x^{10} - 142052502 x^{9} + 428436693 x^{8} + 1751325803 x^{7} - 7808889969 x^{6} - 10234577601 x^{5} + 66678180397 x^{4} + 7459499703 x^{3} - 231410834259 x^{2} + 121782095080 x + 118405688339$ $5^{3}\cdot 7^{12}\cdot 181^{4}\cdot 290767856989^{2}$ $C_3^6:(C_4^3:C_6)$ (as 18T860) $[3]$ $2330668655530000$
18.12.382...875.1 $x^{18} - 114 x^{16} - 81 x^{15} + 4869 x^{14} + 7695 x^{13} - 92125 x^{12} - 262926 x^{11} + 484818 x^{10} + 3805434 x^{9} + 9953298 x^{8} - 15182397 x^{7} - 193683687 x^{6} - 190026729 x^{5} + 1266123081 x^{4} + 2204790435 x^{3} - 1632273930 x^{2} - 2801275974 x + 1408281553$ $-\,5^{3}\cdot 7^{12}\cdot 41^{3}\cdot 419^{3}\cdot 1399^{3}\cdot 5419^{3}$ $C_3^6.C_2\wr C_6$ (as 18T858) $[2]$ $23357713403800000$
18.14.150...000.1 $x^{18} - 5 x^{17} - 203 x^{16} + 1142 x^{15} + 15452 x^{14} - 108199 x^{13} - 508578 x^{12} + 5241173 x^{11} + 2954394 x^{10} - 130752878 x^{9} + 257095451 x^{8} + 1345783175 x^{7} - 6394199290 x^{6} + 3317779364 x^{5} + 38092864911 x^{4} - 116310576690 x^{3} + 154126280400 x^{2} - 100322269664 x + 26004969766$ $2^{14}\cdot 5^{3}\cdot 7^{4}\cdot 229^{6}\cdot 145484985721^{2}$ $C_3^6.C_4^3:D_6$ (as 18T902) trivial $368524659136000000$
18.0.200...875.1 $x^{18} - 8 x^{17} - 1215 x^{16} + 28106 x^{15} + 1194915 x^{14} - 30499845 x^{13} - 559237788 x^{12} + 15070577733 x^{11} + 163470682269 x^{10} - 5968544550177 x^{9} - 20716220311425 x^{8} + 1668206162688246 x^{7} - 7495223397405660 x^{6} - 132445158025191507 x^{5} + 827409919361759100 x^{4} - 504481565375122563 x^{3} + 313145319790037256786 x^{2} - 4844841601915193463162 x + 24897356983928700240273$ $-\,3^{14}\cdot 5^{3}\cdot 31^{9}\cdot 37^{8}\cdot 77509^{4}$ $C_3^5:D_6.\GL(2,\mathbb{Z}/4)$ (as 18T873) not computed
18.18.132...000.1 $x^{18} - 798 x^{16} - 20 x^{15} + 224928 x^{14} + 7902 x^{13} - 27382043 x^{12} - 1718964 x^{11} + 1535006094 x^{10} + 323802374 x^{9} - 38438680059 x^{8} - 16252336464 x^{7} + 342450830059 x^{6} + 214284927690 x^{5} - 378671303319 x^{4} - 225075013068 x^{3} + 103749064524 x^{2} + 59285179728 x + 6587242192$ $2^{26}\cdot 3^{24}\cdot 5^{3}\cdot 229^{7}\cdot 691^{2}\cdot 595807^{2}$ $C_3^6:(C_2^3:S_4)$ (as 18T817) trivial $8408996780400000000000$
Next   displayed columns for results