Learn more

Refine search


Results (1-50 of 57 matches)

Next   displayed columns for results
Label Polynomial Discriminant Galois group Class group Regulator
14.2.827...125.1 $x^{14} - 5$ $5^{13}\cdot 7^{14}$ $F_7 \times C_2$ (as 14T7) trivial $112266.433572$
14.2.141...000.1 $x^{14} - 80$ $2^{12}\cdot 5^{13}\cdot 7^{10}$ $F_7 \times C_2$ (as 14T7) trivial $124900.81966136963$
14.0.361...000.1 $x^{14} + 80$ $-\,2^{20}\cdot 5^{13}\cdot 7^{10}$ $F_7 \times C_2$ (as 14T7) $[2]$ $3617350.9447090914$
14.2.171...125.1 $x^{14} - 5 x - 5$ $5^{13}\cdot 11\cdot 887\cdot 1109\cdot 129654793$ $S_{14}$ (as 14T63) $[2]$ $5774585.27649$
14.2.339...000.1 $x^{14} - 1280$ $2^{12}\cdot 5^{13}\cdot 7^{14}$ $F_7 \times C_2$ (as 14T7) $[2]$ $3209037.9147104514$
14.0.117...875.1 $x^{14} - 5 x + 5$ $-\,5^{13}\cdot 83\cdot 7309\cdot 15820784233$ $S_{14}$ (as 14T63) $[2]$ $3940447.28813$
14.0.135...000.1 $x^{14} + 5$ $-\,2^{14}\cdot 5^{13}\cdot 7^{14}$ $F_7 \times C_2$ (as 14T7) $[2]$ $15760094.5604$
14.2.216...000.1 $x^{14} - 7 x^{13} - 11 x^{12} + 127 x^{11} + 11 x^{10} - 671 x^{9} + 237 x^{8} + 2561 x^{7} - 5092 x^{6} + 2974 x^{5} - 6066 x^{4} - 7708 x^{3} - 4724 x^{2} - 1712 x - 356$ $2^{12}\cdot 3^{7}\cdot 5^{13}\cdot 7^{11}$ $F_7 \times C_2$ (as 14T7) $[2]$ $33008527.197610967$
14.0.323...000.1 $x^{14} + 10 x^{12} + 380 x^{10} + 720 x^{8} + 1600 x^{6} + 13760 x^{4} - 5760 x^{2} + 54880$ $-\,2^{27}\cdot 5^{13}\cdot 7^{11}$ $F_7 \times C_2$ (as 14T7) $[2, 2]$ $22812737.29446636$
14.2.323...000.1 $x^{14} - 10 x^{12} + 380 x^{10} - 720 x^{8} + 1600 x^{6} - 13760 x^{4} - 5760 x^{2} - 54880$ $2^{27}\cdot 5^{13}\cdot 7^{11}$ $F_7 \times C_2$ (as 14T7) $[2]$ $148340748.8484734$
14.2.750...000.1 $x^{14} - 25920$ $2^{12}\cdot 3^{12}\cdot 5^{13}\cdot 7^{10}$ $F_7 \times C_2$ (as 14T7) trivial $116830335.09922236$
14.2.750...000.2 $x^{14} - 184320$ $2^{12}\cdot 3^{12}\cdot 5^{13}\cdot 7^{10}$ $F_7 \times C_2$ (as 14T7) trivial $93850785.57387021$
14.2.750...000.3 $x^{14} - 870 x^{7} - 900$ $2^{12}\cdot 3^{12}\cdot 5^{13}\cdot 7^{10}$ $F_7 \times C_2$ (as 14T7) trivial $145796753.1376601$
14.0.868...000.1 $x^{14} + 1280$ $-\,2^{20}\cdot 5^{13}\cdot 7^{14}$ $F_7 \times C_2$ (as 14T7) $[2, 2, 2]$ $24508512.9090127$
14.0.553...000.1 $x^{14} - 2 x^{13} + 24 x^{12} + 272 x^{11} + 446 x^{10} - 816 x^{9} + 1392 x^{8} - 2444 x^{7} - 32192 x^{6} - 50916 x^{5} - 130756 x^{4} - 229648 x^{3} + 2106736 x^{2} - 391632 x + 1463604$ $-\,2^{20}\cdot 3^{7}\cdot 5^{13}\cdot 7^{11}$ $F_7 \times C_2$ (as 14T7) $[2, 2, 2]$ $101197239.1899543$
14.2.157...000.1 $x^{14} - 15 x^{12} + 225 x^{10} + 2925 x^{8} + 2115 x^{6} + 61515 x^{4} + 580875 x^{2} - 655305$ $2^{12}\cdot 3^{13}\cdot 5^{13}\cdot 7^{11}$ $F_7 \times C_2$ (as 14T7) $[2]$ $898897850.3833008$
14.0.275...000.1 $x^{14} - 1940 x^{7} + 1310720$ $-\,2^{12}\cdot 5^{13}\cdot 7^{10}\cdot 11^{7}$ $F_7 \times C_2$ (as 14T7) $[4]$ $637840049.7415897$
14.2.519...000.1 $x^{14} - 105 x^{12} + 4095 x^{10} - 74025 x^{8} - 12700 x^{7} + 612675 x^{6} + 384300 x^{5} - 1677375 x^{4} - 2499000 x^{3} - 3378375 x^{2} - 535500 x - 2808875$ $2^{12}\cdot 3^{7}\cdot 5^{13}\cdot 7^{15}$ $F_7 \times C_2$ (as 14T7) $[2, 2]$ $852263579.840993$
14.2.180...000.1 $x^{14} - 7 x^{13} + 14 x^{12} + 7 x^{11} - 49 x^{10} + 14 x^{9} + 77 x^{8} + 91 x^{7} - 497 x^{6} + 3794 x^{5} - 8351 x^{4} + 14707 x^{3} - 13874 x^{2} + 7553 x + 1859$ $2^{12}\cdot 3^{12}\cdot 5^{13}\cdot 7^{14}$ $F_7 \times C_2$ (as 14T7) $[7]$ $623409483.7698517$
14.2.180...000.2 $x^{14} - 180$ $2^{12}\cdot 3^{12}\cdot 5^{13}\cdot 7^{14}$ $F_7 \times C_2$ (as 14T7) trivial $4515936390.780555$
14.2.180...000.3 $x^{14} - 103680$ $2^{12}\cdot 3^{12}\cdot 5^{13}\cdot 7^{14}$ $F_7 \times C_2$ (as 14T7) $[2]$ $2209295371.319138$
14.2.180...000.4 $x^{14} - 7 x^{13} + 14 x^{12} + 7 x^{11} - 49 x^{10} + 14 x^{9} + 77 x^{8} + 451 x^{7} - 1757 x^{6} + 15134 x^{5} - 33551 x^{4} + 58807 x^{3} - 55454 x^{2} + 30233 x + 50639$ $2^{12}\cdot 3^{12}\cdot 5^{13}\cdot 7^{14}$ $F_7 \times C_2$ (as 14T7) $[2]$ $2487706161.200316$
14.2.180...000.5 $x^{14} - 1620$ $2^{12}\cdot 3^{12}\cdot 5^{13}\cdot 7^{14}$ $F_7 \times C_2$ (as 14T7) trivial $4201207403.887268$
14.2.180...000.6 $x^{14} - 720$ $2^{12}\cdot 3^{12}\cdot 5^{13}\cdot 7^{14}$ $F_7 \times C_2$ (as 14T7) trivial $4176683296.6763973$
14.2.180...000.7 $x^{14} - 6480$ $2^{12}\cdot 3^{12}\cdot 5^{13}\cdot 7^{14}$ $F_7 \times C_2$ (as 14T7) trivial $4544985243.888383$
14.2.378...000.1 $x^{14} - 420 x^{11} + 2100 x^{10} + 6090 x^{9} - 107310 x^{8} + 622710 x^{7} - 2442300 x^{6} + 7242900 x^{5} - 16154880 x^{4} + 25877040 x^{3} - 27647760 x^{2} + 17366160 x - 4782480$ $2^{12}\cdot 3^{13}\cdot 5^{13}\cdot 7^{15}$ $F_7 \times C_2$ (as 14T7) $[2]$ $45532024055.155136$
14.2.378...000.2 $x^{14} - 7 x^{13} + 49 x^{12} + 7 x^{11} + 161 x^{10} - 3941 x^{9} + 31647 x^{8} - 59709 x^{7} + 107898 x^{6} - 16856 x^{5} + 233954 x^{4} + 737212 x^{3} + 106876 x^{2} + 70028 x + 205354$ $2^{12}\cdot 3^{13}\cdot 5^{13}\cdot 7^{15}$ $F_7 \times C_2$ (as 14T7) $[2, 2]$ $22259005136.311165$
14.0.461...000.1 $x^{14} + 103680$ $-\,2^{20}\cdot 3^{12}\cdot 5^{13}\cdot 7^{14}$ $F_7 \times C_2$ (as 14T7) $[2, 4]$ $24828861586.315315$
14.0.461...000.2 $x^{14} + 720$ $-\,2^{20}\cdot 3^{12}\cdot 5^{13}\cdot 7^{14}$ $F_7 \times C_2$ (as 14T7) $[2]$ $69973617901.9121$
14.0.461...000.3 $x^{14} + 1620$ $-\,2^{20}\cdot 3^{12}\cdot 5^{13}\cdot 7^{14}$ $F_7 \times C_2$ (as 14T7) $[2]$ $69442109140.72594$
14.0.461...000.4 $x^{14} + 6480$ $-\,2^{20}\cdot 3^{12}\cdot 5^{13}\cdot 7^{14}$ $F_7 \times C_2$ (as 14T7) $[2]$ $66953723850.05595$
14.0.968...000.1 $x^{14} + 105 x^{12} - 420 x^{11} + 1365 x^{10} - 13020 x^{9} - 20055 x^{8} + 423330 x^{7} + 1815555 x^{6} + 5258610 x^{5} + 18210255 x^{4} + 43441650 x^{3} + 53117295 x^{2} + 27863010 x + 22749945$ $-\,2^{20}\cdot 3^{13}\cdot 5^{13}\cdot 7^{15}$ $F_7 \times C_2$ (as 14T7) $[2, 2, 2]$ $71441682273.37299$
14.2.469...000.1 $x^{14} - 48020$ $2^{12}\cdot 5^{13}\cdot 7^{26}$ $F_7 \times C_2$ (as 14T7) $[3]$ $232748224833.91092$
14.2.469...000.2 $x^{14} - 3920$ $2^{12}\cdot 5^{13}\cdot 7^{26}$ $F_7 \times C_2$ (as 14T7) $[4]$ $169887499173.80878$
14.0.413...000.1 $x^{14} + 70 x^{12} + 2940 x^{10} + 29540 x^{8} + 322280 x^{6} + 194880 x^{4} + 76300 x^{2} + 11830$ $-\,2^{27}\cdot 3^{12}\cdot 5^{13}\cdot 7^{15}$ $F_7 \times C_2$ (as 14T7) $[2, 2]$ $567982072860.4799$
14.2.413...000.1 $x^{14} - 70 x^{12} + 2940 x^{10} - 29540 x^{8} + 322280 x^{6} - 194880 x^{4} + 76300 x^{2} - 11830$ $2^{27}\cdot 3^{12}\cdot 5^{13}\cdot 7^{15}$ $F_7 \times C_2$ (as 14T7) $[2]$ $3999153870696.913$
14.2.106...000.1 $x^{14} - 154880$ $2^{12}\cdot 5^{13}\cdot 7^{14}\cdot 11^{12}$ $F_7 \times C_2$ (as 14T7) $[7]$ $1574287623790.019$
14.2.106...000.2 $x^{14} - 7 x^{13} + 14 x^{12} + 7 x^{11} - 49 x^{10} + 14 x^{9} + 77 x^{8} + 2171 x^{7} - 7777 x^{6} + 69314 x^{5} - 153951 x^{4} + 269507 x^{3} - 254114 x^{2} + 138593 x + 1178099$ $2^{12}\cdot 5^{13}\cdot 7^{14}\cdot 11^{12}$ $F_7 \times C_2$ (as 14T7) $[2, 28]$ $187713814881.34534$
14.0.117...000.1 $x^{14} - 45100 x^{7} + 1802240000$ $-\,2^{12}\cdot 5^{13}\cdot 7^{14}\cdot 11^{13}$ $F_7 \times C_2$ (as 14T7) $[28]$ $4435424302328.362$
14.0.272...000.1 $x^{14} + 154880$ $-\,2^{20}\cdot 5^{13}\cdot 7^{14}\cdot 11^{12}$ $F_7 \times C_2$ (as 14T7) $[14]$ $37004205722717.836$
14.2.750...000.1 $x^{14} - 7220$ $2^{12}\cdot 5^{13}\cdot 7^{14}\cdot 19^{12}$ $F_7 \times C_2$ (as 14T7) trivial $479353889722540.94$
14.2.162...000.1 $x^{14} - 7 x^{13} - 161 x^{12} + 1057 x^{11} + 11501 x^{10} - 67361 x^{9} - 475923 x^{8} + 2317351 x^{7} + 12382468 x^{6} - 46882766 x^{5} - 198795926 x^{4} + 421319682 x^{3} + 2002116046 x^{2} - 2513009142 x - 7869804486$ $2^{12}\cdot 3^{7}\cdot 5^{13}\cdot 7^{15}\cdot 11^{12}$ $F_7 \times C_2$ (as 14T7) $[14]$ $402371613010501.9$
14.2.350...000.1 $x^{14} - 2245140 x^{7} - 30993639120$ $2^{12}\cdot 3^{12}\cdot 5^{13}\cdot 7^{14}\cdot 41^{7}$ $F_7 \times C_2$ (as 14T7) $[2, 4]$ $623275298582369.2$
14.2.119...000.1 $x^{14} - 16820$ $2^{12}\cdot 5^{13}\cdot 7^{14}\cdot 29^{12}$ $F_7 \times C_2$ (as 14T7) $[2, 14, 28]$ $5074640544113.246$
14.2.419...000.1 $x^{14} - 88704720$ $2^{12}\cdot 3^{12}\cdot 5^{13}\cdot 7^{14}\cdot 13^{12}$ $F_7 \times C_2$ (as 14T7) $[28]$ $763899052587489.2$
21.1.297...000.1 $x^{21} + 21 x^{19} - 2 x^{18} + 209 x^{17} - 26 x^{16} + 1081 x^{15} - 450 x^{14} + 2345 x^{13} - 2990 x^{12} - 107 x^{11} - 5360 x^{10} - 1817 x^{9} + 13424 x^{8} + 28897 x^{7} + 59776 x^{6} + 72068 x^{5} + 63024 x^{4} + 32992 x^{3} + 7616 x^{2} + 576 x + 64$ $2^{26}\cdot 5^{19}\cdot 7^{17}$ $S_3\times F_7$ (as 21T15) $[3]$ $2812507698.960895$
21.1.520...000.1 $x^{21} - 7 x^{20} - 21 x^{19} + 329 x^{18} - 511 x^{17} - 5313 x^{16} + 22673 x^{15} + 17861 x^{14} - 305914 x^{13} + 484596 x^{12} + 1641416 x^{11} - 6850424 x^{10} + 2950976 x^{9} + 28662816 x^{8} - 56752004 x^{7} - 29714272 x^{6} + 268519692 x^{5} - 350328916 x^{4} - 99703156 x^{3} + 680126244 x^{2} - 678292132 x + 258383116$ $2^{18}\cdot 5^{19}\cdot 7^{21}\cdot 211^{7}$ $S_3\times F_7$ (as 21T15) $[2]$ $2795263802088440300$
21.1.207...000.1 $x^{21} - 7 x^{20} - 49 x^{19} + 539 x^{18} + 161 x^{17} - 16051 x^{16} + 38241 x^{15} + 209059 x^{14} - 1086554 x^{13} - 407106 x^{12} + 13782440 x^{11} - 27422584 x^{10} - 41136060 x^{9} + 183654100 x^{8} + 84516280 x^{7} - 1385748588 x^{6} + 3217907756 x^{5} - 2441792668 x^{4} - 4210424932 x^{3} + 11145838172 x^{2} - 7005312580 x + 1393873588$ $2^{33}\cdot 3^{19}\cdot 5^{19}\cdot 7^{21}\cdot 41^{7}$ $S_3\times F_7$ (as 21T15) not computed
21.1.184...000.1 $x^{21} - 7 x^{20} + 56 x^{19} - 161 x^{18} + 581 x^{17} + 434 x^{16} - 1099 x^{15} + 19159 x^{14} + 8281 x^{13} + 87794 x^{12} + 966385 x^{11} - 2665229 x^{10} + 2983120 x^{9} - 37440235 x^{8} + 138040805 x^{7} - 189202188 x^{6} + 722578416 x^{5} - 1035586608 x^{4} + 1556164848 x^{3} - 2269756608 x^{2} + 1964250960 x - 685324272$ $2^{18}\cdot 3^{18}\cdot 5^{19}\cdot 7^{21}\cdot 13^{7}\cdot 83^{7}$ $S_3\times F_7$ (as 21T15) not computed
21.1.670...000.1 $x^{21} - 7 x^{20} - 49 x^{19} + 119 x^{18} + 2681 x^{17} + 2849 x^{16} - 59199 x^{15} - 275051 x^{14} + 372946 x^{13} + 6005034 x^{12} + 15049580 x^{11} - 44208724 x^{10} - 258483120 x^{9} - 193560080 x^{8} + 699630280 x^{7} + 7646828112 x^{6} + 21977505536 x^{5} - 19136576368 x^{4} - 106034214832 x^{3} - 140692650448 x^{2} - 190888547920 x - 142292871632$ $2^{33}\cdot 3^{19}\cdot 5^{19}\cdot 7^{21}\cdot 349^{7}$ $S_3\times F_7$ (as 21T15) not computed
Next   displayed columns for results