Learn more

Refine search


Results (1-50 of at least 1000)

Next   To download results, determine the number of results.
Label Polynomial Discriminant Galois group Class group
3.3.564.1 x3 - x2 - 5x + 3 \( 2^{2}\cdot 3\cdot 47 \) $S_3$ (as 3T2) trivial
3.1.940.1 x3 - 2x - 6 \( -\,2^{2}\cdot 5\cdot 47 \) $S_3$ (as 3T2) trivial
3.3.940.1 x3 - 7x - 4 \( 2^{2}\cdot 5\cdot 47 \) $S_3$ (as 3T2) trivial
3.1.1175.1 x3 + 5x - 5 \( -\,5^{2}\cdot 47 \) $S_3$ (as 3T2) trivial
3.1.1316.1 x3 - x2 + 9x + 7 \( -\,2^{2}\cdot 7\cdot 47 \) $S_3$ (as 3T2) trivial
3.1.1363.1 x3 - x2 - 9x - 10 \( -\,29\cdot 47 \) $S_3$ (as 3T2) trivial
3.1.1927.1 x3 - x2 + 2x - 9 \( -\,41\cdot 47 \) $S_3$ (as 3T2) $[2]$
3.3.2021.1 x3 - 8x - 1 \( 43\cdot 47 \) $S_3$ (as 3T2) trivial
3.1.2068.1 x3 - x2 - 8x - 10 \( -\,2^{2}\cdot 11\cdot 47 \) $S_3$ (as 3T2) $[4]$
3.1.2303.1 x3 - x2 - 2x - 27 \( -\,7^{2}\cdot 47 \) $S_3$ (as 3T2) $[3]$
3.1.2444.1 x3 - 4x - 10 \( -\,2^{2}\cdot 13\cdot 47 \) $S_3$ (as 3T2) trivial
3.1.2491.1 x3 - x2 - 2x + 20 \( -\,47\cdot 53 \) $S_3$ (as 3T2) trivial
3.1.2820.1 x3 - x2 + 9x + 15 \( -\,2^{2}\cdot 3\cdot 5\cdot 47 \) $S_3$ (as 3T2) trivial
3.1.2867.1 x3 - x2 + 2x + 20 \( -\,47\cdot 61 \) $S_3$ (as 3T2) trivial
3.1.3055.1 x3 - x2 + 10x - 33 \( -\,5\cdot 13\cdot 47 \) $S_3$ (as 3T2) trivial
3.1.3431.1 x3 - x2 + 14x - 16 \( -\,47\cdot 73 \) $S_3$ (as 3T2) $[2]$
3.1.3619.1 x3 - x2 - x + 12 \( -\,7\cdot 11\cdot 47 \) $S_3$ (as 3T2) trivial
3.1.3807.1 x3 + 15x - 8 \( -\,3^{4}\cdot 47 \) $S_3$ (as 3T2) $[3]$
3.1.3948.1 x3 - x2 + 7x + 21 \( -\,2^{2}\cdot 3\cdot 7\cdot 47 \) $S_3$ (as 3T2) trivial
3.1.4559.1 x3 - x - 13 \( -\,47\cdot 97 \) $S_3$ (as 3T2) trivial
3.3.4841.1 x3 - x2 - 16x + 27 \( 47\cdot 103 \) $S_3$ (as 3T2) trivial
3.1.4888.1 x3 + 10x - 24 \( -\,2^{3}\cdot 13\cdot 47 \) $S_3$ (as 3T2) trivial
3.1.4935.1 x3 - x2 + 14x + 31 \( -\,3\cdot 5\cdot 7\cdot 47 \) $S_3$ (as 3T2) trivial
3.1.5076.1 x3 - 6x - 28 \( -\,2^{2}\cdot 3^{3}\cdot 47 \) $S_3$ (as 3T2) trivial
3.1.5687.1 x3 - x2 + 4x + 13 \( -\,11^{2}\cdot 47 \) $S_3$ (as 3T2) trivial
3.1.5828.1 x3 - x2 + 4x + 28 \( -\,2^{2}\cdot 31\cdot 47 \) $S_3$ (as 3T2) trivial
3.1.6063.1 x3 - 3x - 45 \( -\,3\cdot 43\cdot 47 \) $S_3$ (as 3T2) trivial
3.1.6251.1 x3 - x2 + 14x - 28 \( -\,7\cdot 19\cdot 47 \) $S_3$ (as 3T2) trivial
3.1.6956.1 x3 - x2 - 9x + 37 \( -\,2^{2}\cdot 37\cdot 47 \) $S_3$ (as 3T2) trivial
3.1.7332.1 x3 - x2 + 8x - 68 \( -\,2^{2}\cdot 3\cdot 13\cdot 47 \) $S_3$ (as 3T2) trivial
3.3.7473.1 x3 - x2 - 12x + 3 \( 3\cdot 47\cdot 53 \) $S_3$ (as 3T2) trivial
3.1.8131.1 x3 - x2 + 13x - 4 \( -\,47\cdot 173 \) $S_3$ (as 3T2) $[2]$
3.1.8507.1 x3 - x2 + 13x - 8 \( -\,47\cdot 181 \) $S_3$ (as 3T2) trivial
3.1.8695.1 x3 - x2 + 4x - 19 \( -\,5\cdot 37\cdot 47 \) $S_3$ (as 3T2) trivial
3.3.8789.1 x3 - 14x - 9 \( 11\cdot 17\cdot 47 \) $S_3$ (as 3T2) $[2]$
3.1.8883.1 x3 - 6x - 19 \( -\,3^{3}\cdot 7\cdot 47 \) $S_3$ (as 3T2) trivial
3.1.9071.1 x3 - x2 + 8x - 19 \( -\,47\cdot 193 \) $S_3$ (as 3T2) $[2]$
3.1.9259.1 x3 - x2 - 12x + 80 \( -\,47\cdot 197 \) $S_3$ (as 3T2) trivial
3.1.9823.1 x3 - x2 - 19 \( -\,11\cdot 19\cdot 47 \) $S_3$ (as 3T2) $[4]$
3.1.10011.1 x3 - x2 + 9x + 54 \( -\,3\cdot 47\cdot 71 \) $S_3$ (as 3T2) trivial
3.1.10152.1 x3 - 9x - 22 \( -\,2^{3}\cdot 3^{3}\cdot 47 \) $S_3$ (as 3T2) $[2]$
3.1.10763.1 x3 - x2 - 18x - 44 \( -\,47\cdot 229 \) $S_3$ (as 3T2) trivial
3.3.10904.1 x3 - 17x - 18 \( 2^{3}\cdot 29\cdot 47 \) $S_3$ (as 3T2) trivial
3.1.10951.1 x3 - x2 + 8x - 21 \( -\,47\cdot 233 \) $S_3$ (as 3T2) $[4]$
3.3.11092.1 x3 - 16x - 14 \( 2^{2}\cdot 47\cdot 59 \) $S_3$ (as 3T2) trivial
3.1.11139.1 x3 - 12x - 63 \( -\,3\cdot 47\cdot 79 \) $S_3$ (as 3T2) trivial
3.3.11421.1 x3 - 18x - 21 \( 3^{5}\cdot 47 \) $S_3$ (as 3T2) trivial
3.1.11656.1 x3 - x2 + 10x + 14 \( -\,2^{3}\cdot 31\cdot 47 \) $S_3$ (as 3T2) trivial
3.3.11656.1 x3 - 34x - 64 \( 2^{3}\cdot 31\cdot 47 \) $S_3$ (as 3T2) trivial
3.1.12408.1 x3 - x2 - 32x - 72 \( -\,2^{3}\cdot 3\cdot 11\cdot 47 \) $S_3$ (as 3T2) trivial
Next   To download results, determine the number of results.