Learn more

Refine search


Results (1-50 of at least 1000)

Next   To download results, determine the number of results.
Label Polynomial Discriminant Galois group Class group
3.1.972.1 x3 - 12 \( -\,2^{2}\cdot 3^{5} \) $S_3$ (as 3T2) trivial
3.3.1944.1 x3 - 9x - 6 \( 2^{3}\cdot 3^{5} \) $S_3$ (as 3T2) trivial
3.1.3159.3 x3 + 9x - 3 \( -\,3^{5}\cdot 13 \) $S_3$ (as 3T2) trivial
3.1.6075.2 x3 - 15 \( -\,3^{5}\cdot 5^{2} \) $S_3$ (as 3T2) $[2]$
3.1.6804.3 x3 + 9x - 30 \( -\,2^{2}\cdot 3^{5}\cdot 7 \) $S_3$ (as 3T2) trivial
3.1.8991.2 x3 - 9x - 21 \( -\,3^{5}\cdot 37 \) $S_3$ (as 3T2) trivial
3.1.9720.1 x3 + 27x - 18 \( -\,2^{3}\cdot 3^{5}\cdot 5 \) $S_3$ (as 3T2) trivial
3.1.11907.1 x3 - 63 \( -\,3^{5}\cdot 7^{2} \) $S_3$ (as 3T2) $[6]$
3.1.14823.1 x3 - 9x - 48 \( -\,3^{5}\cdot 61 \) $S_3$ (as 3T2) trivial
3.1.17739.2 x3 - 36x - 87 \( -\,3^{5}\cdot 73 \) $S_3$ (as 3T2) trivial
3.1.18468.3 x3 + 9x - 24 \( -\,2^{2}\cdot 3^{5}\cdot 19 \) $S_3$ (as 3T2) $[2]$
3.1.20655.1 x3 + 27x - 63 \( -\,3^{5}\cdot 5\cdot 17 \) $S_3$ (as 3T2) $[6]$
3.1.20655.2 x3 - 27x - 99 \( -\,3^{5}\cdot 5\cdot 17 \) $S_3$ (as 3T2) $[3]$
3.1.20655.3 x3 + 27x - 12 \( -\,3^{5}\cdot 5\cdot 17 \) $S_3$ (as 3T2) $[3]$
3.1.21384.3 x3 + 18x - 48 \( -\,2^{3}\cdot 3^{5}\cdot 11 \) $S_3$ (as 3T2) trivial
3.3.22356.1 x3 - 36x - 60 \( 2^{2}\cdot 3^{5}\cdot 23 \) $S_3$ (as 3T2) trivial
3.3.23085.1 x3 - 18x - 3 \( 3^{5}\cdot 5\cdot 19 \) $S_3$ (as 3T2) trivial
3.1.23571.1 x3 - 9x - 60 \( -\,3^{5}\cdot 97 \) $S_3$ (as 3T2) trivial
3.1.24300.3 x3 - 150 \( -\,2^{2}\cdot 3^{5}\cdot 5^{2} \) $S_3$ (as 3T2) $[3]$
3.1.26487.1 x3 - 45x - 132 \( -\,3^{5}\cdot 109 \) $S_3$ (as 3T2) $[3]$
3.1.26487.2 x3 - 9x - 33 \( -\,3^{5}\cdot 109 \) $S_3$ (as 3T2) $[3]$
3.1.26487.3 x3 + 27x - 147 \( -\,3^{5}\cdot 109 \) $S_3$ (as 3T2) $[3]$
3.1.29403.1 x3 - 99 \( -\,3^{5}\cdot 11^{2} \) $S_3$ (as 3T2) trivial
3.1.30132.1 x3 + 18x - 60 \( -\,2^{2}\cdot 3^{5}\cdot 31 \) $S_3$ (as 3T2) trivial
3.3.31833.1 x3 - 45x - 111 \( 3^{5}\cdot 131 \) $S_3$ (as 3T2) trivial
3.1.32319.1 x3 + 9x - 138 \( -\,3^{5}\cdot 7\cdot 19 \) $S_3$ (as 3T2) trivial
3.1.33048.3 x3 - 27x - 150 \( -\,2^{3}\cdot 3^{5}\cdot 17 \) $S_3$ (as 3T2) trivial
3.3.34749.1 x3 - 36x - 75 \( 3^{5}\cdot 11\cdot 13 \) $S_3$ (as 3T2) trivial
3.1.35235.3 x3 + 18x - 21 \( -\,3^{5}\cdot 5\cdot 29 \) $S_3$ (as 3T2) trivial
3.3.37665.1 x3 - 27x - 39 \( 3^{5}\cdot 5\cdot 31 \) $S_3$ (as 3T2) trivial
3.1.38151.1 x3 + 27x - 99 \( -\,3^{5}\cdot 157 \) $S_3$ (as 3T2) $[2]$
3.3.40581.1 x3 - 54x - 99 \( 3^{5}\cdot 167 \) $S_3$ (as 3T2) $[2]$
3.1.41067.2 x3 - 39 \( -\,3^{5}\cdot 13^{2} \) $S_3$ (as 3T2) $[6]$
3.1.41796.1 x3 - 18x - 84 \( -\,2^{2}\cdot 3^{5}\cdot 43 \) $S_3$ (as 3T2) $[3]$
3.1.41796.2 x3 + 9x - 78 \( -\,2^{2}\cdot 3^{5}\cdot 43 \) $S_3$ (as 3T2) $[3]$
3.1.41796.3 x3 - 27x - 204 \( -\,2^{2}\cdot 3^{5}\cdot 43 \) $S_3$ (as 3T2) $[9]$
3.3.43497.1 x3 - 45x - 84 \( 3^{5}\cdot 179 \) $S_3$ (as 3T2) trivial
3.1.44712.3 x3 + 45x - 114 \( -\,2^{3}\cdot 3^{5}\cdot 23 \) $S_3$ (as 3T2) $[4]$
3.3.46413.1 x3 - 54x - 147 \( 3^{5}\cdot 191 \) $S_3$ (as 3T2) trivial
3.1.46899.1 x3 - 18x - 51 \( -\,3^{5}\cdot 193 \) $S_3$ (as 3T2) trivial
3.1.47628.2 x3 - 42 \( -\,2^{2}\cdot 3^{5}\cdot 7^{2} \) $S_3$ (as 3T2) $[3]$
3.1.49815.1 x3 - 27x - 69 \( -\,3^{5}\cdot 5\cdot 41 \) $S_3$ (as 3T2) trivial
3.1.52731.1 x3 + 18x - 33 \( -\,3^{5}\cdot 7\cdot 31 \) $S_3$ (as 3T2) $[2]$
3.1.53460.1 x3 - 27x - 144 \( -\,2^{2}\cdot 3^{5}\cdot 5\cdot 11 \) $S_3$ (as 3T2) $[8]$
3.3.58077.3 x3 - 54x - 63 \( 3^{5}\cdot 239 \) $S_3$ (as 3T2) trivial
3.1.58563.3 x3 + 9x - 186 \( -\,3^{5}\cdot 241 \) $S_3$ (as 3T2) trivial
3.3.60264.1 x3 - 54x - 120 \( 2^{3}\cdot 3^{5}\cdot 31 \) $S_3$ (as 3T2) trivial
3.1.64395.2 x3 - 18x - 57 \( -\,3^{5}\cdot 5\cdot 53 \) $S_3$ (as 3T2) trivial
3.3.66825.2 x3 - 45x - 105 \( 3^{5}\cdot 5^{2}\cdot 11 \) $S_3$ (as 3T2) trivial
3.1.67311.1 x3 + 63x - 159 \( -\,3^{5}\cdot 277 \) $S_3$ (as 3T2) trivial
Next   To download results, determine the number of results.