Learn more

Refine search


Results (1-50 of at least 1000)

Next   To download results, determine the number of results.
Label Polynomial Discriminant Galois group Class group Regulator
10.0.859773123.1 $x^{10} - 3 x^{9} + 6 x^{8} - 9 x^{7} + 12 x^{6} - 15 x^{5} + 18 x^{4} - 18 x^{3} + 15 x^{2} - 9 x + 3$ $-\,3^{9}\cdot 11^{2}\cdot 19^{2}$ $S_5\times C_2$ (as 10T22) trivial $5.08034052289$
10.0.949763799.1 $x^{10} - x^{9} + 3 x^{8} - 3 x^{7} + 6 x^{6} - 9 x^{5} + 12 x^{4} - 12 x^{3} + 9 x^{2} - 4 x + 1$ $-\,3^{9}\cdot 73\cdot 661$ $S_5^2 \wr C_2$ (as 10T43) trivial $5.43744318757$
10.0.978815907.1 $x^{10} - x^{9} + 3 x^{5} - x + 1$ $-\,3^{9}\cdot 223^{2}$ $S_5\times C_2$ (as 10T22) trivial $5.57252177932$
10.0.1276422867.1 $x^{10} - 4 x^{9} + 9 x^{8} - 15 x^{7} + 18 x^{6} - 18 x^{5} + 15 x^{4} - 9 x^{3} + 6 x^{2} - x + 1$ $-\,3^{9}\cdot 64849$ $S_5^2 \wr C_2$ (as 10T43) trivial $6.75237227686$
10.0.1587552048.1 $x^{10} - 4 x^{9} + 9 x^{8} - 15 x^{7} + 21 x^{6} - 21 x^{5} + 21 x^{4} - 15 x^{3} + 9 x^{2} - 4 x + 1$ $-\,2^{4}\cdot 3^{9}\cdot 71^{2}$ $S_5\times C_2$ (as 10T22) trivial $8.39732339411$
10.0.1626465339.1 $x^{10} - 2 x^{9} + 3 x^{7} - 3 x^{6} - 3 x^{5} + 6 x^{4} - 3 x^{2} + x + 1$ $-\,3^{9}\cdot 82633$ $S_5^2 \wr C_2$ (as 10T43) trivial $7.83417125177$
10.0.1813532571.1 $x^{10} - x^{9} - 3 x^{8} + 3 x^{6} + 6 x^{3} + 9 x^{2} + 5 x + 1$ $-\,3^{9}\cdot 199\cdot 463$ $S_5^2 \wr C_2$ (as 10T43) trivial $8.38843194319$
10.0.1890532467.1 $x^{10} - x^{9} + 3 x^{7} - 3 x^{6} + 3 x^{4} - x + 1$ $-\,3^{9}\cdot 139\cdot 691$ $S_5^2 \wr C_2$ (as 10T43) trivial $8.90687836208$
10.0.2129562819.1 $x^{10} - 2 x^{9} + 6 x^{8} - 12 x^{7} + 18 x^{6} - 24 x^{5} + 27 x^{4} - 21 x^{3} + 12 x^{2} - 5 x + 1$ $-\,3^{9}\cdot 108193$ $S_5^2 \wr C_2$ (as 10T43) trivial $9.23438677283$
10.0.2351350863.1 $x^{10} - x^{9} + 3 x^{6} - 3 x^{5} + 3 x^{2} - x + 1$ $-\,3^{9}\cdot 67\cdot 1783$ $S_5^2 \wr C_2$ (as 10T43) trivial $9.43463887767$
10.0.2415832371.1 $x^{10} - 2 x^{9} + 6 x^{6} - 6 x^{5} - 3 x^{3} + 3 x^{2} + x + 1$ $-\,3^{9}\cdot 139\cdot 883$ $S_5^2 \wr C_2$ (as 10T43) trivial $10.000783607$
10.0.2593687959.1 $x^{10} - x^{9} + 6 x^{8} - 3 x^{7} + 9 x^{6} + 3 x^{3} - 3 x^{2} - x + 1$ $-\,3^{9}\cdot 313\cdot 421$ $S_5^2 \wr C_2$ (as 10T43) trivial $11.3275532593$
10.0.2652028371.1 $x^{10} - 2 x^{9} + 6 x^{7} - 3 x^{6} - 9 x^{5} + 6 x^{4} + 6 x^{3} - 3 x^{2} - 2 x + 1$ $-\,3^{9}\cdot 67\cdot 2011$ $S_5^2 \wr C_2$ (as 10T43) trivial $10.177720801$
10.0.2765874843.1 $x^{10} - 2 x^{9} + 6 x^{7} - 6 x^{6} - 6 x^{5} + 18 x^{4} - 15 x^{3} + 6 x^{2} - 2 x + 1$ $-\,3^{9}\cdot 140521$ $S_5^2 \wr C_2$ (as 10T43) trivial $10.9226667523$
10.0.2845236699.1 $x^{10} - 2 x^{9} + 6 x^{7} - 6 x^{6} - 3 x^{5} + 6 x^{4} - 2 x + 1$ $-\,3^{9}\cdot 31\cdot 4663$ $S_5^2 \wr C_2$ (as 10T43) trivial $12.051187577$
10.0.2941840863.1 $x^{10} - x^{9} + 6 x^{5} + 9 x^{4} + 9 x^{3} + 9 x^{2} + 5 x + 1$ $-\,3^{9}\cdot 13\cdot 11497$ $S_5^2 \wr C_2$ (as 10T43) trivial $12.4336498925$
10.0.3015297819.1 $x^{10} - 2 x^{9} + 6 x^{8} - 9 x^{7} + 15 x^{6} - 15 x^{5} + 18 x^{4} - 12 x^{3} + 9 x^{2} - 5 x + 1$ $-\,3^{9}\cdot 307\cdot 499$ $S_5^2 \wr C_2$ (as 10T43) trivial $11.2589823469$
10.0.3219371163.1 $x^{10} - 4 x^{9} + 9 x^{8} - 12 x^{7} + 12 x^{6} - 9 x^{5} + 9 x^{4} - 9 x^{3} + 9 x^{2} - 4 x + 1$ $-\,3^{9}\cdot 163561$ $S_5^2 \wr C_2$ (as 10T43) trivial $11.2626362495$
10.0.3311723799.1 $x^{10} - 3 x^{9} + 6 x^{8} - 12 x^{7} + 21 x^{6} - 27 x^{5} + 30 x^{4} - 30 x^{3} + 24 x^{2} - 12 x + 3$ $-\,3^{9}\cdot 168253$ $S_5^2 \wr C_2$ (as 10T43) trivial $13.3832441428$
10.0.3377622483.1 $x^{10} - x^{9} + 3 x^{7} - 3 x^{5} + 3 x^{4} + 3 x^{3} - 3 x^{2} - x + 1$ $-\,3^{9}\cdot 157\cdot 1093$ $S_5^2 \wr C_2$ (as 10T43) trivial $12.2462368487$
10.0.3488870799.1 $x^{10} - x^{9} + 3 x^{5} - 3 x^{3} + 2 x + 1$ $-\,3^{9}\cdot 157\cdot 1129$ $S_5^2 \wr C_2$ (as 10T43) trivial $13.6263763631$
10.0.3589254099.1 $x^{10} - 2 x^{9} + 6 x^{8} - 9 x^{7} + 9 x^{6} - 9 x^{5} + 3 x^{4} + x + 1$ $-\,3^{9}\cdot 182353$ $S_5^2 \wr C_2$ (as 10T43) trivial $12.4933348891$
10.0.3679953363.1 $x^{10} - x^{9} + 3 x^{8} - 3 x^{7} + 6 x^{6} - 6 x^{5} + 6 x^{4} - 6 x^{3} + 6 x^{2} - 4 x + 1$ $-\,3^{9}\cdot 31\cdot 37\cdot 163$ $S_5^2 \wr C_2$ (as 10T43) trivial $11.9323211636$
10.0.4049836299.1 $x^{10} - x^{9} - 3 x^{8} + 6 x^{6} - 3 x^{4} + 3 x^{2} - x + 1$ $-\,3^{9}\cdot 61\cdot 3373$ $S_5^2 \wr C_2$ (as 10T43) trivial $14.2181720116$
10.0.4162501791.1 $x^{10} - 4 x^{9} + 9 x^{8} - 15 x^{7} + 21 x^{6} - 21 x^{5} + 18 x^{4} - 12 x^{3} + 6 x^{2} - x + 1$ $-\,3^{9}\cdot 7\cdot 30211$ $S_5^2 \wr C_2$ (as 10T43) trivial $14.0766042744$
10.0.4178090727.1 $x^{10} - x^{9} - 3 x^{8} + 3 x^{7} + 6 x^{6} - 3 x^{5} - 6 x^{4} + 3 x^{2} + 2 x + 1$ $-\,3^{9}\cdot 37\cdot 5737$ $S_5^2 \wr C_2$ (as 10T43) trivial $14.403572085$
10.0.4237671168.1 $x^{10} - x^{9} - 3 x^{8} + 6 x^{7} + 3 x^{6} - 9 x^{5} + 3 x^{4} + 6 x^{3} - 3 x^{2} - x + 1$ $-\,2^{8}\cdot 3^{9}\cdot 29^{2}$ $S_5\times C_2$ (as 10T22) trivial $17.448078285$
10.0.4277765439.1 $x^{10} - x^{9} - 3 x^{6} + 3 x^{5} + 3 x^{2} - x + 1$ $-\,3^{9}\cdot 217333$ $S_5^2 \wr C_2$ (as 10T43) trivial $14.5837257768$
10.0.4287213279.1 $x^{10} - x^{9} + 6 x^{8} - 6 x^{7} + 12 x^{6} - 12 x^{5} + 9 x^{4} - 9 x^{3} + 3 x^{2} - x + 1$ $-\,3^{9}\cdot 139\cdot 1567$ $S_5^2 \wr C_2$ (as 10T43) trivial $16.0655986809$
10.0.4369645683.1 $x^{10} - x^{9} + 3 x^{8} + 3 x^{5} - 3 x^{4} - 3 x^{3} + 6 x^{2} - 4 x + 1$ $-\,3^{9}\cdot 13\cdot 17077$ $S_5^2 \wr C_2$ (as 10T43) trivial $13.6314559514$
10.0.4427277507.1 $x^{10} - x^{9} + 6 x^{5} + 3 x^{4} + 3 x^{2} - 4 x + 1$ $-\,3^{9}\cdot 224929$ $S_5^2 \wr C_2$ (as 10T43) trivial $14.9031200734$
10.0.4556476719.1 $x^{10} - x^{9} + 3 x^{8} - 6 x^{7} + 6 x^{6} - 9 x^{5} + 9 x^{4} - 6 x^{3} + 6 x^{2} - x + 1$ $-\,3^{9}\cdot 231493$ $S_5^2 \wr C_2$ (as 10T43) trivial $14.3929250402$
10.0.4851249327.1 $x^{10} - x^{9} + 3 x^{7} - 3 x^{6} + 3 x^{5} - 3 x^{3} + 6 x^{2} - 4 x + 1$ $-\,3^{9}\cdot 246469$ $S_5^2 \wr C_2$ (as 10T43) trivial $15.3331153059$
10.0.4904865819.1 $x^{10} - 4 x^{9} + 9 x^{8} - 12 x^{7} + 12 x^{6} - 6 x^{5} + 3 x^{3} - x + 1$ $-\,3^{9}\cdot 7\cdot 97\cdot 367$ $S_5^2 \wr C_2$ (as 10T43) trivial $16.0429548952$
10.0.5070911607.1 $x^{10} - 4 x^{9} + 9 x^{8} - 12 x^{7} + 12 x^{6} - 9 x^{5} + 6 x^{4} - 3 x^{2} + 2 x + 1$ $-\,3^{9}\cdot 241\cdot 1069$ $S_5^2 \wr C_2$ (as 10T43) trivial $17.7177434107$
10.0.5202708975.1 $x^{10} - 2 x^{9} + 3 x^{8} - 3 x^{7} + 9 x^{5} - 3 x^{4} - 6 x^{3} + 3 x^{2} + 4 x + 1$ $-\,3^{9}\cdot 5^{2}\cdot 97\cdot 109$ $S_5^2 \wr C_2$ (as 10T43) trivial $17.9598588323$
10.0.5216172147.1 $x^{10} - 4 x^{9} + 12 x^{8} - 21 x^{7} + 27 x^{6} - 24 x^{5} + 18 x^{4} - 12 x^{3} + 9 x^{2} - 4 x + 1$ $-\,3^{9}\cdot 43\cdot 6163$ $S_5^2 \wr C_2$ (as 10T43) trivial $15.3090297009$
10.0.5261521779.1 $x^{10} - 5 x^{9} + 12 x^{8} - 18 x^{7} + 21 x^{6} - 18 x^{5} + 12 x^{4} - 9 x^{3} + 9 x^{2} - 5 x + 1$ $-\,3^{9}\cdot 31\cdot 8623$ $S_5^2 \wr C_2$ (as 10T43) trivial $15.5772597455$
10.0.5435834427.1 $x^{10} - 2 x^{9} + 3 x^{7} - 6 x^{4} + 3 x^{3} + 6 x^{2} - 5 x + 1$ $-\,3^{9}\cdot 277\cdot 997$ $S_5^2 \wr C_2$ (as 10T43) trivial $16.6598555973$
10.0.5462760771.1 $x^{10} - x^{9} + 3 x^{6} - 3 x^{5} + 3 x^{4} - 3 x^{3} + 3 x^{2} - x + 1$ $-\,3^{9}\cdot 13\cdot 37\cdot 577$ $S_5^2 \wr C_2$ (as 10T43) trivial $16.2034361981$
10.0.5518798272.1 $x^{10} - x^{9} - 3 x^{8} + 3 x^{7} + 3 x^{6} - 3 x^{5} - 3 x^{4} + 3 x^{2} + 2 x + 1$ $-\,2^{6}\cdot 3^{9}\cdot 13\cdot 337$ $S_5^2 \wr C_2$ (as 10T43) trivial $18.0156073796$
10.0.5537162511.1 $x^{10} - 2 x^{9} + 6 x^{8} - 9 x^{7} + 12 x^{6} - 15 x^{5} + 15 x^{4} - 15 x^{3} + 12 x^{2} - 5 x + 1$ $-\,3^{9}\cdot 281317$ $S_5^2 \wr C_2$ (as 10T43) trivial $15.4013284155$
10.0.5537871099.1 $x^{10} - 2 x^{9} - 3 x^{8} + 9 x^{7} - 12 x^{5} + 6 x^{4} + 6 x^{3} - 3 x^{2} - 2 x + 1$ $-\,3^{9}\cdot 281353$ $S_5^2 \wr C_2$ (as 10T43) trivial $15.9307700506$
10.0.5586055083.1 $x^{10} - x^{9} + 3 x^{8} - 3 x^{7} + 6 x^{6} + 6 x^{4} + 3 x^{3} + 3 x^{2} + 2 x + 1$ $-\,3^{9}\cdot 7\cdot 40543$ $S_5^2 \wr C_2$ (as 10T43) trivial $17.1897439668$
10.0.5654847168.1 $x^{10} - 2 x^{9} + 3 x^{7} - 6 x^{3} + 9 x^{2} - 5 x + 1$ $-\,2^{6}\cdot 3^{9}\cdot 67^{2}$ $S_5\times C_2$ (as 10T22) trivial $19.8004026763$
10.0.5666125527.1 $x^{10} - 3 x^{9} + 6 x^{8} - 12 x^{7} + 18 x^{6} - 21 x^{5} + 24 x^{4} - 21 x^{3} + 15 x^{2} - 9 x + 3$ $-\,3^{9}\cdot 19\cdot 109\cdot 139$ $S_5^2 \wr C_2$ (as 10T43) trivial $16.5258680567$
10.0.5734622367.1 $x^{10} - 3 x^{9} + 9 x^{8} - 15 x^{7} + 24 x^{6} - 27 x^{5} + 30 x^{4} - 24 x^{3} + 18 x^{2} - 9 x + 3$ $-\,3^{9}\cdot 291349$ $S_5^2 \wr C_2$ (as 10T43) trivial $18.1979721904$
10.0.5898069999.1 $x^{10} - x^{9} + 3 x^{8} - 3 x^{6} + 6 x^{5} - 6 x^{4} + 6 x^{2} - 4 x + 1$ $-\,3^{9}\cdot 299653$ $S_5^2 \wr C_2$ (as 10T43) trivial $18.5191296321$
10.0.5908462623.1 $x^{10} - 4 x^{9} + 6 x^{8} - 3 x^{7} - 3 x^{5} + 6 x^{4} - 6 x^{3} + 6 x^{2} - x + 1$ $-\,3^{9}\cdot 7\cdot 19\cdot 37\cdot 61$ $S_5^2 \wr C_2$ (as 10T43) trivial $19.3703940878$
10.0.6040259991.1 $x^{10} - 3 x^{6} - 3 x^{3} + 6 x^{2} - 3 x + 3$ $-\,3^{9}\cdot 306877$ $S_5^2 \wr C_2$ (as 10T43) trivial $17.023508801$
Next   To download results, determine the number of results.