Learn more

Note: Search results may be incomplete. Given $p$-adic completions contain an unramified field and completions are only searched for ramified primes.

Refine search


Results (1-50 of 150 matches)

Next   displayed columns for results
Label Polynomial Discriminant Galois group Class group Regulator
12.2.3219020673024.1 $x^{12} + 4 x^{8} - 10 x^{7} + 9 x^{6} - 10 x^{5} + 4 x^{4} + 1$ $-\,2^{12}\cdot 3\cdot 13\cdot 67^{4}$ $C_2\wr A_5$ (as 12T255) trivial $26.6230541306$
12.4.11525668685245452.1 $x^{12} - 2 x^{11} - 2 x^{10} - x^{9} + 5 x^{8} + 4 x^{7} + 6 x^{6} + 4 x^{5} + 5 x^{4} - x^{3} - 2 x^{2} - 2 x + 1$ $2^{2}\cdot 3\cdot 19^{4}\cdot 293^{4}$ $C_2\wr A_5$ (as 12T255) trivial $7320.07502112$
12.8.11525668685245452.1 $x^{12} - 14 x^{10} + 48 x^{8} - 48 x^{6} - 13 x^{4} + 25 x^{2} + 3$ $2^{2}\cdot 3\cdot 19^{4}\cdot 293^{4}$ $C_2\wr A_5$ (as 12T255) trivial $12027.890653$
12.6.14313122359031523.1 $x^{12} - 30 x^{8} + 9 x^{6} + 101 x^{4} - 14 x^{2} - 3$ $-\,3\cdot 8311^{4}$ $C_2\wr A_5$ (as 12T255) trivial $16776.9301464$
12.6.440932392230880000.1 $x^{12} - 6 x^{11} + 6 x^{10} + 25 x^{9} - 88 x^{8} + 136 x^{7} - 66 x^{6} - 107 x^{5} + 248 x^{4} - 242 x^{3} + 114 x^{2} - 21 x - 1$ $-\,2^{8}\cdot 3\cdot 5^{4}\cdot 11^{4}\cdot 89^{4}$ $C_2\wr A_6$ (as 12T286) trivial $51713.8611555$
12.10.581...640.1 $x^{12} - 2 x^{11} - 14 x^{10} + 34 x^{9} + 39 x^{8} - 134 x^{7} + 30 x^{6} + 106 x^{5} - 129 x^{4} + 96 x^{3} + 67 x^{2} - 96 x + 12$ $-\,2^{16}\cdot 3\cdot 5\cdot 877^{4}$ $C_2\wr A_6$ (as 12T286) trivial $295570.56593$
12.12.757...469.1 $x^{12} - 17 x^{10} - 3 x^{9} + 96 x^{8} + 21 x^{7} - 238 x^{6} - 45 x^{5} + 270 x^{4} + 35 x^{3} - 121 x^{2} - 9 x + 12$ $3\cdot 19^{4}\cdot 263\cdot 293^{4}$ $C_2\wr A_5$ (as 12T255) trivial $399637.258345$
14.6.18390538601343981.1 $x^{14} - 5 x^{13} + 10 x^{12} - 7 x^{11} - 10 x^{10} + 27 x^{9} - 23 x^{8} - 2 x^{7} + 23 x^{6} - 18 x^{5} + 2 x^{4} + 7 x^{3} - 3 x^{2} - 2 x + 1$ $3^{2}\cdot 109\cdot 877^{2}\cdot 4937^{2}$ $C_2^7.S_7$ (as 14T57) trivial $582.255636584$
14.12.806...703.1 $x^{14} - 5 x^{13} - 2 x^{12} + 42 x^{11} - 27 x^{10} - 134 x^{9} + 128 x^{8} + 204 x^{7} - 213 x^{6} - 153 x^{5} + 151 x^{4} + 52 x^{3} - 41 x^{2} - 7 x + 1$ $-\,3\cdot 17^{2}\cdot 93075271168633709$ $S_{14}$ (as 14T63) trivial $208508.048504$
14.2.959...224.1 $x^{14} - 2 x - 2$ $2^{14}\cdot 3\cdot 24358673\cdot 80175119$ $S_{14}$ (as 14T63) trivial $59251.4260162$
14.2.110...680.1 $x^{14} - 10 x^{6} - 10 x^{3} - 4 x - 2$ $2^{16}\cdot 3\cdot 5\cdot 24967\cdot 4517632501$ $S_{14}$ (as 14T63) trivial $72965.8508871$
14.2.126...888.1 $x^{14} - 8 x + 4$ $2^{20}\cdot 3\cdot 403607401098721$ $S_{14}$ (as 14T63) trivial $252551.885813$
14.0.657...391.1 $x^{14} - 4 x + 7$ $-\,3\cdot 53\cdot 413254088413760205449$ $S_{14}$ (as 14T63) trivial $1229557.25952$
14.2.813...352.1 $x^{14} - 4 x + 1$ $2^{14}\cdot 3\cdot 443\cdot 704947\cdot 5296658981$ $S_{14}$ (as 14T63) $[2]$ $1098211.35227$
14.2.813...440.1 $x^{14} - 4 x - 2$ $2^{27}\cdot 3\cdot 5\cdot 17\cdot 31\cdot 76714539691$ $S_{14}$ (as 14T63) trivial $2957011.70752$
14.2.821...493.1 $x^{14} - 8 x - 5$ $3\cdot 43\cdot 4373\cdot 145590943675893329$ $S_{14}$ (as 14T63) trivial $1765568.69553$
14.2.855...269.1 $x^{14} - 7 x - 2$ $3\cdot 7^{12}\cdot 971\cdot 13537\cdot 156749$ $S_{14}$ (as 14T63) trivial $4706363.49697$
14.2.932...016.1 $x^{14} - 4 x - 8$ $2^{12}\cdot 3\cdot 2729\cdot 5101\cdot 544939285283$ $S_{14}$ (as 14T63) trivial $4602418.44187$
14.0.186...168.1 $x^{14} - 2 x + 4$ $-\,2^{12}\cdot 3\cdot 263\cdot 695111\cdot 82988591377$ $S_{14}$ (as 14T63) trivial $4245203.39144$
14.0.745...571.1 $x^{14} - x + 4$ $-\,3\cdot 41851\cdot 5939437166141545907$ $S_{14}$ (as 14T63) $[2]$ $4390839.73869$
14.2.184...109.1 $x^{14} - 5 x + 1$ $3\cdot 608553521\cdot 1012566613894343$ $S_{14}$ (as 14T63) trivial $7880807.7909$
14.2.184...197.1 $x^{14} - 5 x - 2$ $3\cdot 2484527\cdot 46838527\cdot 5295376231$ $S_{14}$ (as 14T63) trivial $14220597.8274$
14.2.135...253.1 $x^{14} - x - 5$ $3\cdot 43\cdot 73\cdot 10007\cdot 143941520401396787$ $S_{14}$ (as 14T63) trivial $21936324.3129$
14.2.135...152.1 $x^{14} - 2 x - 5$ $2^{15}\cdot 3\cdot 43\cdot 103\cdot 607\cdot 6271933\cdot 8183437$ $S_{14}$ (as 14T63) trivial $39480808.7557$
14.2.228...309.1 $x^{14} - 7 x + 1$ $3\cdot 7^{14}\cdot 17\cdot 23\cdot 277\cdot 103572221$ $S_{14}$ (as 14T63) trivial $26275515.9416$
14.0.119...251.1 $x^{14} - x + 7$ $-\,3\cdot 11\cdot 89\cdot 7883\cdot 12457\cdot 414777865853633$ $S_{14}$ (as 14T63) $[2]$ $20591792.7745$
14.2.204...973.1 $x^{14} - 7 x + 4$ $3\cdot 7^{14}\cdot 61\cdot 12041\cdot 136952659$ $S_{14}$ (as 14T63) trivial $154839005.211$
14.2.218...797.1 $x^{14} - 7 x - 5$ $3\cdot 7^{14}\cdot 59\cdot 181\cdot 11117\cdot 906557$ $S_{14}$ (as 14T63) trivial $126896644.874$
14.0.871...715.1 $x^{14} - 7 x + 7$ $-\,3\cdot 5\cdot 7^{14}\cdot 67\cdot 283\cdot 3727\cdot 1211827$ $S_{14}$ (as 14T63) $[2]$ $72940786.0692$
14.0.107...387.1 $x^{14} - 5 x + 7$ $-\,3\cdot 2175005776303\cdot 164717224160743$ $S_{14}$ (as 14T63) trivial $140190546.359$
14.0.107...360.1 $x^{14} - 2 x + 7$ $-\,2^{15}\cdot 3\cdot 5\cdot 229\cdot 5659\cdot 1690248843237413$ $S_{14}$ (as 14T63) trivial $327117591.886$
14.2.133...296.1 $x^{14} - 8 x + 1$ $2^{14}\cdot 3\cdot 269\cdot 1093\cdot 2053\cdot 63463\cdot 707457271$ $S_{14}$ (as 14T63) $[2]$ $225977914.448$
14.2.610...461.1 $x^{14} - x - 8$ $3\cdot 71\cdot 472751\cdot 3060203\cdot 19824399190549$ $S_{14}$ (as 14T63) trivial $692444436.833$
14.2.611...333.1 $x^{14} - 5 x - 8$ $3\cdot 43\cdot 601\cdot 9191009\cdot 8575636381971053$ $S_{14}$ (as 14T63) trivial $1317470159.16$
15.3.603...125.1 $x^{15} - 15 x^{13} + 90 x^{11} - 2 x^{10} - 275 x^{9} + 20 x^{8} + 450 x^{7} - 70 x^{6} - 384 x^{5} + 100 x^{4} + 170 x^{3} - 50 x^{2} - 45 x + 19$ $3^{2}\cdot 5^{13}\cdot 7^{2}\cdot 257^{5}$ $D_5^3.D_6$ (as 15T68) trivial $2559410.685$
15.3.150...125.1 $x^{15} - 15 x^{13} + 90 x^{11} - 5 x^{10} - 275 x^{9} + 50 x^{8} + 450 x^{7} - 175 x^{6} - 384 x^{5} + 250 x^{4} + 170 x^{3} - 125 x^{2} - 45 x + 37$ $3^{2}\cdot 5^{15}\cdot 7^{2}\cdot 257^{5}$ $D_5^3.D_6$ (as 15T68) trivial $7382868.41617$
16.0.188...776.1 $x^{16} - 6 x^{15} + 18 x^{14} - 36 x^{13} + 54 x^{12} - 66 x^{11} + 64 x^{10} - 44 x^{9} + 33 x^{8} - 88 x^{7} + 256 x^{6} - 528 x^{5} + 864 x^{4} - 1152 x^{3} + 1152 x^{2} - 768 x + 256$ $2^{24}\cdot 3^{8}\cdot 643^{4}$ $C_2\times A_8$ (as 16T1839) $[2]$ $134274.109142$
16.16.770...496.1 $x^{16} - 26 x^{14} - 12 x^{13} + 242 x^{12} + 212 x^{11} - 1008 x^{10} - 1256 x^{9} + 1854 x^{8} + 3232 x^{7} - 926 x^{6} - 3592 x^{5} - 1048 x^{4} + 1196 x^{3} + 888 x^{2} + 212 x + 17$ $2^{36}\cdot 3^{8}\cdot 643^{4}$ $C_2\times A_8$ (as 16T1839) trivial $130170772.495$
18.4.596...184.1 $x^{18} - 3 x^{17} - 2 x^{16} + 15 x^{15} - 11 x^{14} - 20 x^{13} + 37 x^{12} - 3 x^{11} - 43 x^{10} + 32 x^{9} + 21 x^{8} - 38 x^{7} + 6 x^{6} + 21 x^{5} - 12 x^{4} - 4 x^{3} + 6 x^{2} - 1$ $-\,2^{8}\cdot 3^{2}\cdot 19037\cdot 41999819\cdot 32385166207$ $S_{18}$ (as 18T983) trivial $1312243.79186$
18.0.563...744.1 $x^{18} + 33 x^{16} + 400 x^{14} + 2320 x^{12} + 6854 x^{10} + 9894 x^{8} + 6064 x^{6} + 1648 x^{4} + 201 x^{2} + 9$ $-\,2^{42}\cdot 3^{4}\cdot 3547^{4}$ $C_2\times A_9$ (as 18T888) $[6]$ $5284504.97814$
18.8.121...043.1 $x^{18} - 6 x^{15} - 10 x^{14} + 22 x^{12} + 40 x^{11} + 15 x^{10} - 41 x^{9} - 74 x^{8} - 30 x^{7} + 39 x^{6} + 54 x^{5} + 15 x^{4} - 13 x^{3} - 10 x^{2} + 1$ $-\,3^{3}\cdot 19^{6}\cdot 293^{6}\cdot 1509961$ $C_3^6.C_2\wr A_5$ (as 18T948) trivial $593825523.706$
18.10.782...713.1 $x^{18} - 9 x^{16} - 6 x^{15} + 25 x^{14} + 45 x^{13} - x^{12} - 100 x^{11} - 112 x^{10} + 28 x^{9} + 166 x^{8} + 134 x^{7} - 24 x^{6} - 116 x^{5} - 67 x^{4} + 10 x^{3} + 25 x^{2} + 9 x + 1$ $3\cdot 31\cdot 8311^{6}\cdot 255181$ $C_3^6.C_2\wr A_5$ (as 18T948) trivial $2020163346.81$
18.0.173...568.1 $x^{18} + 31 x^{16} + 354 x^{14} + 1898 x^{12} + 5215 x^{10} + 7345 x^{8} + 4896 x^{6} + 1300 x^{4} + 129 x^{2} + 3$ $-\,2^{52}\cdot 3^{5}\cdot 3547^{4}$ $C_2^9.A_9$ (as 18T966) $[166]$ $5284504.97814$
18.18.398...169.1 $x^{18} - 27 x^{16} - 6 x^{15} + 295 x^{14} + 135 x^{13} - 1651 x^{12} - 1180 x^{11} + 4847 x^{10} + 4978 x^{9} - 6317 x^{8} - 9964 x^{7} + 153 x^{6} + 6907 x^{5} + 4982 x^{4} + 1660 x^{3} + 295 x^{2} + 27 x + 1$ $3^{4}\cdot 8311^{6}\cdot 1494218615009$ $C_3^6.C_2\wr A_5$ (as 18T948) trivial $55516522381700$
18.16.937...680.1 $x^{18} - 28 x^{16} - 6 x^{15} + 314 x^{14} + 140 x^{13} - 1781 x^{12} - 1256 x^{11} + 5213 x^{10} + 5368 x^{9} - 6572 x^{8} - 10706 x^{7} - 297 x^{6} + 7200 x^{5} + 5353 x^{4} + 1790 x^{3} + 314 x^{2} + 28 x + 1$ $-\,2^{24}\cdot 3\cdot 5\cdot 599\cdot 877^{6}\cdot 1366691687$ $C_3^6.C_2\wr A_6$ (as 18T960) trivial $78801029123400$
18.18.939...328.1 $x^{18} - 6 x^{17} - 48 x^{16} + 328 x^{15} + 816 x^{14} - 7008 x^{13} - 5296 x^{12} + 74432 x^{11} + 1728 x^{10} - 421120 x^{9} + 105216 x^{8} + 1311744 x^{7} - 369920 x^{6} - 2205184 x^{5} + 398336 x^{4} + 1826816 x^{3} - 4096 x^{2} - 573440 x - 110592$ $2^{16}\cdot 3^{4}\cdot 37\cdot 43\cdot 101^{6}\cdot 379\cdot 1031137\cdot 26819381$ $S_6\wr C_3.C_2$ (as 18T977) trivial $77365117271000$
18.18.453...837.1 $x^{18} - 30 x^{16} - 6 x^{15} + 365 x^{14} + 150 x^{13} - 2284 x^{12} - 1460 x^{11} + 7588 x^{10} + 6877 x^{9} - 11768 x^{8} - 15476 x^{7} + 3063 x^{6} + 12498 x^{5} + 7738 x^{4} + 2293 x^{3} + 365 x^{2} + 30 x + 1$ $3\cdot 31^{6}\cdot 157\cdot 557^{6}\cdot 1327\cdot 273632869$ $C_3^6.C_2\wr A_6$ (as 18T960) trivial $569950940029000$
18.12.219...928.1 $x^{18} - 6 x^{17} - 48 x^{16} + 328 x^{15} + 816 x^{14} - 7008 x^{13} - 5136 x^{12} + 73792 x^{11} - 4032 x^{10} - 398080 x^{9} + 174336 x^{8} + 1035264 x^{7} - 695552 x^{6} - 939520 x^{5} + 1135616 x^{4} - 401408 x^{3} - 823296 x^{2} + 606208 x - 208896$ $-\,2^{18}\cdot 3^{4}\cdot 389^{6}\cdot 2978911225739869028407$ $S_6\wr C_3.C_2$ (as 18T977) trivial $54709971499000000$
20.0.148...713.1 $x^{20} - 5 x^{19} + 16 x^{18} - 46 x^{17} + 108 x^{16} - 214 x^{15} + 395 x^{14} - 698 x^{13} + 1123 x^{12} - 1588 x^{11} + 2057 x^{10} - 2588 x^{9} + 3128 x^{8} - 3348 x^{7} + 2932 x^{6} - 1996 x^{5} + 1016 x^{4} - 371 x^{3} + 92 x^{2} - 14 x + 1$ $3^{5}\cdot 11^{19}$ $C_5\times D_4$ (as 20T12) trivial $5805.73215178$
20.2.263...243.1 $x^{20} - x^{19} + 5 x^{18} - 6 x^{17} + 14 x^{16} - 20 x^{15} + 21 x^{14} - 38 x^{13} + 34 x^{12} - 41 x^{11} + 64 x^{10} - 51 x^{9} + 16 x^{8} - 51 x^{7} + 48 x^{6} - 5 x^{5} + 7 x^{4} - 14 x^{3} + 2 x^{2} - x - 1$ $-\,3^{5}\cdot 1609^{4}\cdot 4021^{2}$ $C_2^8.(D_4\times S_5)$ (as 20T886) trivial $1001.06558286$
Next   displayed columns for results