Label |
Polynomial |
Degree |
Signature |
Discriminant |
Ram. prime count |
Root discriminant |
Galois root discriminant |
CM field |
Galois |
Monogenic |
Galois group |
Class group |
Unit group torsion |
Unit group rank |
Regulator |
2.0.24.1 |
$x^{2} + 6$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 3$ |
$2$ |
$4.89897948557$ |
$4.898979485566356$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2]$ |
$2$ |
0 |
$1$ |
2.2.40.1 |
$x^{2} - 10$ |
$2$ |
[2,0] |
$2^{3}\cdot 5$ |
$2$ |
$6.32455532034$ |
$6.324555320336759$ |
|
✓ |
✓ |
$C_2$ (as 2T1) |
$[2]$ |
$2$ |
$1$ |
$1.81844645923$ |
2.0.88.1 |
$x^{2} + 22$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 11$ |
$2$ |
$9.38083151965$ |
$9.38083151964686$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2]$ |
$2$ |
0 |
$1$ |
2.2.104.1 |
$x^{2} - 26$ |
$2$ |
[2,0] |
$2^{3}\cdot 13$ |
$2$ |
$10.1980390272$ |
$10.198039027185569$ |
|
✓ |
✓ |
$C_2$ (as 2T1) |
$[2]$ |
$2$ |
$1$ |
$2.31243834127$ |
2.0.152.1 |
$x^{2} + 38$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 19$ |
$2$ |
$12.3288280059$ |
$12.328828005937952$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[6]$ |
$2$ |
0 |
$1$ |
2.2.168.1 |
$x^{2} - 42$ |
$2$ |
[2,0] |
$2^{3}\cdot 3\cdot 7$ |
$3$ |
$12.9614813968$ |
$12.96148139681572$ |
|
✓ |
✓ |
$C_2$ (as 2T1) |
$[2]$ |
$2$ |
$1$ |
$3.2566139548$ |
2.2.232.1 |
$x^{2} - 58$ |
$2$ |
[2,0] |
$2^{3}\cdot 29$ |
$2$ |
$15.2315462117$ |
$15.231546211727817$ |
|
✓ |
✓ |
$C_2$ (as 2T1) |
$[2]$ |
$2$ |
$1$ |
$5.28829253732$ |
2.0.280.1 |
$x^{2} + 70$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 5\cdot 7$ |
$3$ |
$16.7332005307$ |
$16.73320053068151$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 2]$ |
$2$ |
0 |
$1$ |
2.2.296.1 |
$x^{2} - 74$ |
$2$ |
[2,0] |
$2^{3}\cdot 37$ |
$2$ |
$17.2046505341$ |
$17.204650534085253$ |
|
✓ |
✓ |
$C_2$ (as 2T1) |
$[2]$ |
$2$ |
$1$ |
$4.45448247706$ |
2.0.344.1 |
$x^{2} + 86$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 43$ |
$2$ |
$18.547236991$ |
$18.547236990991408$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[10]$ |
$2$ |
0 |
$1$ |
2.0.408.1 |
$x^{2} + 102$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 3\cdot 17$ |
$3$ |
$20.1990098767$ |
$20.199009876724155$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 2]$ |
$2$ |
0 |
$1$ |
2.2.424.1 |
$x^{2} - 106$ |
$2$ |
[2,0] |
$2^{3}\cdot 53$ |
$2$ |
$20.591260282$ |
$20.591260281974$ |
|
✓ |
✓ |
$C_2$ (as 2T1) |
$[2]$ |
$2$ |
$1$ |
$8.98844605565$ |
2.0.472.1 |
$x^{2} + 118$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 59$ |
$2$ |
$21.7255609824$ |
$21.72556098240043$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[6]$ |
$2$ |
0 |
$1$ |
2.2.488.1 |
$x^{2} - 122$ |
$2$ |
[2,0] |
$2^{3}\cdot 61$ |
$2$ |
$22.0907220344$ |
$22.090722034374522$ |
|
✓ |
✓ |
$C_2$ (as 2T1) |
$[2]$ |
$2$ |
$1$ |
$3.09310219505$ |
2.0.536.1 |
$x^{2} + 134$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 67$ |
$2$ |
$23.1516738056$ |
$23.15167380558045$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[14]$ |
$2$ |
0 |
$1$ |
2.2.552.1 |
$x^{2} - 138$ |
$2$ |
[2,0] |
$2^{3}\cdot 3\cdot 23$ |
$3$ |
$23.4946802489$ |
$23.49468024894146$ |
|
✓ |
✓ |
$C_2$ (as 2T1) |
$[2]$ |
$2$ |
$1$ |
$4.54318158967$ |
2.2.616.1 |
$x^{2} - 154$ |
$2$ |
[2,0] |
$2^{3}\cdot 7\cdot 11$ |
$3$ |
$24.819347292$ |
$24.819347291981714$ |
|
✓ |
✓ |
$C_2$ (as 2T1) |
$[2]$ |
$2$ |
$1$ |
$10.6593747624$ |
2.0.664.1 |
$x^{2} + 166$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 83$ |
$2$ |
$25.7681974535$ |
$25.768197453450252$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[10]$ |
$2$ |
0 |
$1$ |
2.2.680.1 |
$x^{2} - 170$ |
$2$ |
[2,0] |
$2^{3}\cdot 5\cdot 17$ |
$3$ |
$26.0768096208$ |
$26.076809620810597$ |
|
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 2]$ |
$2$ |
$1$ |
$3.25957255626$ |
2.0.728.1 |
$x^{2} + 182$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 7\cdot 13$ |
$3$ |
$26.9814751265$ |
$26.981475126464083$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 6]$ |
$2$ |
0 |
$1$ |
2.2.744.1 |
$x^{2} - 186$ |
$2$ |
[2,0] |
$2^{3}\cdot 3\cdot 31$ |
$3$ |
$27.276363394$ |
$27.27636339397171$ |
|
✓ |
✓ |
$C_2$ (as 2T1) |
$[2]$ |
$2$ |
$1$ |
$9.61593880009$ |
2.2.808.1 |
$x^{2} - 202$ |
$2$ |
[2,0] |
$2^{3}\cdot 101$ |
$2$ |
$28.4253408071$ |
$28.42534080710379$ |
|
✓ |
✓ |
$C_2$ (as 2T1) |
$[2]$ |
$2$ |
$1$ |
$8.74544370544$ |
2.0.856.1 |
$x^{2} + 214$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 107$ |
$2$ |
$29.2574776767$ |
$29.257477676655586$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[6]$ |
$2$ |
0 |
$1$ |
2.2.872.1 |
$x^{2} - 218$ |
$2$ |
[2,0] |
$2^{3}\cdot 109$ |
$2$ |
$29.5296461205$ |
$29.5296461204668$ |
|
✓ |
✓ |
$C_2$ (as 2T1) |
$[2]$ |
$2$ |
$1$ |
$6.21860408786$ |
2.0.920.1 |
$x^{2} + 230$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 5\cdot 23$ |
$3$ |
$30.3315017762$ |
$30.331501776206203$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 10]$ |
$2$ |
0 |
$1$ |
2.0.984.1 |
$x^{2} + 246$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 3\cdot 41$ |
$3$ |
$31.3687742827$ |
$31.368774282716245$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 6]$ |
$2$ |
0 |
$1$ |
2.0.1048.1 |
$x^{2} + 262$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 131$ |
$2$ |
$32.3728281125$ |
$32.37282811247729$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[6]$ |
$2$ |
0 |
$1$ |
2.2.1064.1 |
$x^{2} - 266$ |
$2$ |
[2,0] |
$2^{3}\cdot 7\cdot 19$ |
$3$ |
$32.6190128606$ |
$32.61901286060018$ |
|
✓ |
✓ |
$C_2$ (as 2T1) |
$[2]$ |
$2$ |
$1$ |
$7.22256548603$ |
2.0.1112.1 |
$x^{2} + 278$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 139$ |
$2$ |
$33.3466640011$ |
$33.34666400106613$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[14]$ |
$2$ |
0 |
$1$ |
2.2.1128.1 |
$x^{2} - 282$ |
$2$ |
[2,0] |
$2^{3}\cdot 3\cdot 47$ |
$3$ |
$33.5857112475$ |
$33.58571124749333$ |
|
✓ |
✓ |
$C_2$ (as 2T1) |
$[2]$ |
$2$ |
$1$ |
$8.45574318387$ |
2.2.1192.1 |
$x^{2} - 298$ |
$2$ |
[2,0] |
$2^{3}\cdot 149$ |
$2$ |
$34.5253530033$ |
$34.52535300326414$ |
|
✓ |
✓ |
$C_2$ (as 2T1) |
$[2]$ |
$2$ |
$1$ |
$13.6159785473$ |
2.0.1240.1 |
$x^{2} + 310$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 5\cdot 31$ |
$3$ |
$35.2136337233$ |
$35.21363372331802$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 4]$ |
$2$ |
0 |
$1$ |
2.2.1256.1 |
$x^{2} - 314$ |
$2$ |
[2,0] |
$2^{3}\cdot 157$ |
$2$ |
$35.4400902933$ |
$35.4400902933387$ |
|
✓ |
✓ |
$C_2$ (as 2T1) |
$[2]$ |
$2$ |
$1$ |
$6.78671822449$ |
2.0.1304.1 |
$x^{2} + 326$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 163$ |
$2$ |
$36.1109401705$ |
$36.11094017053558$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[22]$ |
$2$ |
0 |
$1$ |
2.2.1320.1 |
$x^{2} - 330$ |
$2$ |
[2,0] |
$2^{3}\cdot 3\cdot 5\cdot 11$ |
$4$ |
$36.3318042492$ |
$36.3318042491699$ |
|
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 2]$ |
$2$ |
$1$ |
$5.38447402013$ |
2.2.1384.1 |
$x^{2} - 346$ |
$2$ |
[2,0] |
$2^{3}\cdot 173$ |
$2$ |
$37.2021504755$ |
$37.20215047547655$ |
|
✓ |
✓ |
$C_2$ (as 2T1) |
$[6]$ |
$2$ |
$1$ |
$5.22577557754$ |
2.0.1432.1 |
$x^{2} + 358$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 179$ |
$2$ |
$37.8417758568$ |
$37.841775856849004$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[6]$ |
$2$ |
0 |
$1$ |
2.2.1448.1 |
$x^{2} - 362$ |
$2$ |
[2,0] |
$2^{3}\cdot 181$ |
$2$ |
$38.0525951809$ |
$38.05259518088089$ |
|
✓ |
✓ |
$C_2$ (as 2T1) |
$[2]$ |
$2$ |
$1$ |
$3.63827796223$ |
2.0.1496.1 |
$x^{2} + 374$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 11\cdot 17$ |
$3$ |
$38.6781592116$ |
$38.67815921162743$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 14]$ |
$2$ |
0 |
$1$ |
2.0.1560.1 |
$x^{2} + 390$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 3\cdot 5\cdot 13$ |
$4$ |
$39.4968353163$ |
$39.496835316262995$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 2, 4]$ |
$2$ |
0 |
$1$ |
2.2.1576.1 |
$x^{2} - 394$ |
$2$ |
[2,0] |
$2^{3}\cdot 197$ |
$2$ |
$39.6988664826$ |
$39.698866482558415$ |
|
✓ |
✓ |
$C_2$ (as 2T1) |
$[2]$ |
$2$ |
$1$ |
$20.4876018182$ |
2.0.1624.1 |
$x^{2} + 406$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 7\cdot 29$ |
$3$ |
$40.2988833592$ |
$40.29888335921977$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 8]$ |
$2$ |
0 |
$1$ |
2.2.1640.1 |
$x^{2} - 410$ |
$2$ |
[2,0] |
$2^{3}\cdot 5\cdot 41$ |
$3$ |
$40.4969134626$ |
$40.496913462633174$ |
|
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 2]$ |
$2$ |
$1$ |
$5.08755822911$ |
2.0.1688.1 |
$x^{2} + 422$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 211$ |
$2$ |
$41.0852771683$ |
$41.08527716834828$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[10]$ |
$2$ |
0 |
$1$ |
2.2.1704.1 |
$x^{2} - 426$ |
$2$ |
[2,0] |
$2^{3}\cdot 3\cdot 71$ |
$3$ |
$41.2795348811$ |
$41.27953488110059$ |
|
✓ |
✓ |
$C_2$ (as 2T1) |
$[2]$ |
$2$ |
$1$ |
$12.0867371554$ |
2.0.1752.1 |
$x^{2} + 438$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 3\cdot 73$ |
$3$ |
$41.8568990729$ |
$41.8568990729127$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 4]$ |
$2$ |
0 |
$1$ |
2.2.1768.1 |
$x^{2} - 442$ |
$2$ |
[2,0] |
$2^{3}\cdot 13\cdot 17$ |
$3$ |
$42.0475920833$ |
$42.04759208325728$ |
|
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 4]$ |
$2$ |
$1$ |
$3.73823603026$ |
2.0.1816.1 |
$x^{2} + 454$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 227$ |
$2$ |
$42.6145515053$ |
$42.61455150532503$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[14]$ |
$2$ |
0 |
$1$ |
2.2.1832.1 |
$x^{2} - 458$ |
$2$ |
[2,0] |
$2^{3}\cdot 229$ |
$2$ |
$42.8018691181$ |
$42.80186911806539$ |
|
✓ |
✓ |
$C_2$ (as 2T1) |
$[2]$ |
$2$ |
$1$ |
$5.36599785027$ |
2.0.1880.1 |
$x^{2} + 470$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 5\cdot 47$ |
$3$ |
$43.3589667774$ |
$43.3589667773576$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 10]$ |
$2$ |
0 |
$1$ |