Learn more

Note: Search results may be incomplete. Given $p$-adic completions contain an unramified field and completions are only searched for ramified primes.

Refine search


Results (1-50 of 293 matches)

Next   displayed columns for results
Label Polynomial Discriminant Galois group Class group Regulator
14.2.3405373945327868.1 $x^{14} - 2 x^{13} + x^{12} + x^{11} - 3 x^{10} + 2 x^{9} + x^{8} - 3 x^{7} + 3 x^{6} + x^{5} - 3 x^{4} + x^{3} + x^{2} - 2 x - 1$ $2^{2}\cdot 571\cdot 1490969328077$ $S_{14}$ (as 14T63) trivial $203.180427696$
14.2.312145214074303896.1 $x^{14} - 6 x^{13} + 15 x^{12} - 21 x^{11} + 5 x^{10} + 23 x^{9} - 34 x^{8} - 3 x^{7} + 36 x^{6} - 23 x^{5} - 21 x^{4} + 24 x^{3} + 9 x^{2} - 16 x - 6$ $2^{3}\cdot 3^{3}\cdot 11^{6}\cdot 13^{8}$ $C_2\wr F_7$ (as 14T48) trivial $4213.63772224$
14.0.936435642222911688.1 $x^{14} - 4 x^{13} + 8 x^{12} - 14 x^{11} + 29 x^{10} - 52 x^{9} + 83 x^{8} - 97 x^{7} + 124 x^{6} - 108 x^{5} + 108 x^{4} - 56 x^{3} + 54 x^{2} - 13 x + 11$ $-\,2^{3}\cdot 3^{4}\cdot 11^{6}\cdot 13^{8}$ $C_2\wr F_7$ (as 14T48) trivial $3619.99301644$
14.2.103...568.1 $x^{14} - 3 x^{13} - 4 x^{12} + 13 x^{11} + 21 x^{10} - 39 x^{9} - 53 x^{8} + 47 x^{7} + 95 x^{6} - 25 x^{5} - 71 x^{4} - 22 x^{3} + 26 x^{2} + 7 x + 1$ $2^{3}\cdot 3^{4}\cdot 11^{7}\cdot 13^{8}$ $C_2\wr F_7$ (as 14T48) trivial $22855.5172753$
14.10.185...468.1 $x^{14} - 13 x^{12} + 45 x^{10} - 49 x^{8} - 5 x^{6} + 24 x^{4} - 2 x^{2} - 3$ $2^{2}\cdot 3\cdot 7^{8}\cdot 173^{6}$ $C_2\wr F_7$ (as 14T48) trivial $1837714.54031$
14.6.370...936.1 $x^{14} - 16 x^{12} - 8 x^{11} + 76 x^{10} + 118 x^{9} - 166 x^{8} - 954 x^{7} + 565 x^{6} + 3537 x^{5} - 3007 x^{4} - 5201 x^{3} + 5678 x^{2} + 1212 x - 1089$ $2^{3}\cdot 3\cdot 7^{8}\cdot 173^{6}$ $C_2\wr F_7$ (as 14T48) trivial $775756.186614$
16.0.22028181368750000.1 $x^{16} - 3 x^{15} + 3 x^{14} - 2 x^{13} + 2 x^{12} + 5 x^{11} - 19 x^{10} + 28 x^{9} - 27 x^{8} + 12 x^{7} + 19 x^{6} - 58 x^{5} + 78 x^{4} - 62 x^{3} + 32 x^{2} - 9 x + 1$ $2^{4}\cdot 5^{8}\cdot 59^{3}\cdot 131^{2}$ $C_2^6.S_4^2:D_4$ (as 16T1905) trivial $26.6804881826$
16.0.56081487068750000.1 $x^{16} - x^{15} - x^{14} + 3 x^{12} + 3 x^{11} - 3 x^{10} - 2 x^{9} - 3 x^{8} + 7 x^{7} + 8 x^{6} - 4 x^{5} - 4 x^{4} + 4 x^{2} + 2 x + 1$ $2^{4}\cdot 5^{8}\cdot 11\cdot 13^{8}$ $C_2\wr C_2^3:C_3$ (as 16T1658) trivial $47.8954104485$
16.0.178853944618750000.1 $x^{16} - 4 x^{15} + 11 x^{14} - 19 x^{13} + 24 x^{12} - 21 x^{11} + 11 x^{10} - 2 x^{9} - 2 x^{8} + 4 x^{6} - 9 x^{5} + 9 x^{4} - 4 x^{3} + 2 x^{2} - x + 1$ $2^{4}\cdot 5^{8}\cdot 19\cdot 197^{4}$ $C_2\wr C_2^3.S_4$ (as 16T1846) trivial $95.7565158318$
16.4.620175937656250000.2 $x^{16} - 2 x^{15} - x^{14} + 8 x^{13} - 11 x^{12} + 4 x^{11} + 3 x^{10} - 6 x^{9} + 17 x^{8} - 15 x^{7} - 14 x^{6} + 23 x^{5} + 4 x^{4} - 15 x^{3} + 2 x^{2} + 4 x - 1$ $2^{4}\cdot 5^{10}\cdot 251^{4}$ $(C_2^3\times C_4):S_4$ (as 16T1046) trivial $330.648894344$
16.0.677163639765819024.1 $x^{16} - 2 x^{14} + 8 x^{12} - 11 x^{10} + 19 x^{8} - 20 x^{6} + 25 x^{4} - 12 x^{2} + 9$ $2^{4}\cdot 3^{2}\cdot 7^{8}\cdot 13^{8}$ $(C_2^3\times C_4):A_4$ (as 16T717) trivial $342.162997893$
16.0.246...000.1 $x^{16} + x^{14} - x^{12} - 3 x^{10} + 8 x^{8} + 26 x^{6} + 21 x^{4} + 2 x^{2} + 1$ $2^{6}\cdot 5^{8}\cdot 11^{2}\cdot 13^{8}$ $C_2\wr C_2^3:C_3$ (as 16T1656) $[2]$ $348.195120169$
16.4.261...112.1 $x^{16} + x^{14} - x^{13} - 5 x^{12} - 8 x^{11} - 28 x^{10} - 51 x^{9} - 50 x^{8} - 46 x^{7} - 64 x^{6} - 57 x^{5} - 31 x^{4} - 22 x^{3} - 17 x^{2} - 7 x - 1$ $2^{10}\cdot 43\cdot 2777^{4}$ $C_4^4.C_2\wr S_4$ (as 16T1879) trivial $1065.05910362$
16.0.288...000.2 $x^{16} - 2 x^{15} + 5 x^{14} + x^{13} + x^{12} + 14 x^{11} + 12 x^{10} + 7 x^{9} + 38 x^{8} + 16 x^{7} + 29 x^{6} + 36 x^{5} + 29 x^{4} + 22 x^{3} + 20 x^{2} + 6 x + 1$ $2^{4}\cdot 5^{8}\cdot 59^{3}\cdot 131^{3}$ $C_2^6.S_4^2:C_2^2$ (as 16T1886) trivial $422.662977441$
16.0.431...488.1 $x^{16} - 3 x^{15} + 6 x^{14} - 10 x^{13} + 20 x^{12} - 29 x^{11} + 37 x^{10} - 45 x^{9} + 59 x^{8} - 56 x^{7} + 50 x^{6} - 53 x^{5} + 41 x^{4} - 24 x^{3} + 19 x^{2} - 12 x + 3$ $2^{4}\cdot 3^{8}\cdot 23^{4}\cdot 43^{5}$ $C_2\wr C_2^3.S_4$ (as 16T1846) trivial $2949.56896645$
16.0.640...000.1 $x^{16} - x^{15} - 2 x^{14} + 8 x^{13} - 6 x^{12} + 8 x^{10} - 5 x^{9} + 36 x^{8} - 118 x^{7} + 204 x^{6} - 160 x^{5} + 146 x^{4} - 74 x^{3} + 47 x^{2} + 4 x + 1$ $2^{4}\cdot 5^{8}\cdot 59^{2}\cdot 131^{4}$ $C_2^6.S_4^2:C_2^2$ (as 16T1884) trivial $522.231440689$
16.0.651...776.1 $x^{16} - 6 x^{15} + 8 x^{14} + 15 x^{13} - 25 x^{12} - 70 x^{11} + 127 x^{10} + 83 x^{9} - 187 x^{8} - 146 x^{7} + 278 x^{6} + 36 x^{5} - 109 x^{4} - 68 x^{3} + 60 x^{2} + 4$ $2^{4}\cdot 3^{8}\cdot 199^{6}$ $(C_2^3\times C_4):S_4$ (as 16T1057) trivial $1322.98972667$
16.0.105...048.1 $x^{16} - 8 x^{15} + 35 x^{14} - 105 x^{13} + 240 x^{12} - 438 x^{11} + 660 x^{10} - 837 x^{9} + 906 x^{8} - 837 x^{7} + 660 x^{6} - 438 x^{5} + 240 x^{4} - 105 x^{3} + 35 x^{2} - 8 x + 1$ $2^{6}\cdot 2777^{5}$ $C_2^8.\GL(2,3)$ (as 16T1764) trivial $1227.32411506$
16.4.105...048.1 $x^{16} - x^{15} - 5 x^{14} + 11 x^{13} - x^{12} - 28 x^{11} + 39 x^{10} - 7 x^{9} - 64 x^{8} + 86 x^{7} - 11 x^{6} - 98 x^{5} + 81 x^{4} + 42 x^{3} - 98 x^{2} + 56 x - 2$ $2^{6}\cdot 2777^{5}$ $C_2^8.\GL(2,3)$ (as 16T1764) trivial $2473.81293127$
16.0.422...192.1 $x^{16} + 8 x^{14} - x^{13} + 33 x^{12} - 6 x^{11} + 74 x^{10} + 6 x^{9} + 94 x^{8} + 49 x^{7} + 93 x^{6} + 81 x^{5} + 73 x^{4} + 64 x^{3} + 40 x^{2} + 14 x + 2$ $2^{8}\cdot 2777^{5}$ $C_2^8.\GL(2,3)$ (as 16T1764) trivial $2193.72664496$
16.4.422...192.1 $x^{16} - 6 x^{15} + 17 x^{14} - 24 x^{13} + 5 x^{12} + 48 x^{11} - 88 x^{10} + 34 x^{9} + 99 x^{8} - 153 x^{7} - 21 x^{6} + 191 x^{5} - 18 x^{4} - 131 x^{3} - 4 x^{2} + 41 x + 11$ $2^{8}\cdot 2777^{5}$ $C_2^8.\GL(2,3)$ (as 16T1764) trivial $4972.55778643$
16.8.563...408.1 $x^{16} - 2 x^{14} - 6 x^{12} + 10 x^{10} + 12 x^{8} - 13 x^{6} - 9 x^{4} + 4 x^{2} + 2$ $2^{9}\cdot 43^{2}\cdot 2777^{4}$ $C_4^4.C_2\wr S_4$ (as 16T1879) trivial $11325.1823286$
16.2.106...000.1 $x^{16} + 6 x^{14} - 4 x^{12} - 5 x^{10} + 18 x^{8} - 26 x^{6} + 9 x^{4} - 5 x^{2} - 5$ $-\,2^{4}\cdot 3^{8}\cdot 5^{9}\cdot 151^{4}$ $C_2^8.A_4\wr C_2$ (as 16T1862) trivial $5177.05416447$
16.6.106...000.1 $x^{16} - x^{15} + x^{14} + 10 x^{13} - 21 x^{12} + 19 x^{11} + 6 x^{10} - 92 x^{9} + 100 x^{8} - 65 x^{7} - 44 x^{6} + 136 x^{5} - 7 x^{4} - 37 x^{3} + 3 x^{2} + 6 x + 1$ $-\,2^{4}\cdot 3^{8}\cdot 5^{9}\cdot 151^{4}$ $C_2^8.A_4\wr C_2$ (as 16T1862) trivial $9343.83128083$
16.6.157...000.1 $x^{16} - 4 x^{15} + x^{14} + 11 x^{13} - 26 x^{12} + 24 x^{11} - 33 x^{9} + 48 x^{8} - 33 x^{7} + 24 x^{5} - 26 x^{4} + 11 x^{3} + x^{2} - 4 x + 1$ $-\,2^{4}\cdot 3^{12}\cdot 5^{8}\cdot 83^{4}$ $C_{2440}.D_6$ (as 16T1759) trivial $10891.1821433$
16.12.157...000.1 $x^{16} - 11 x^{14} + 41 x^{12} - 49 x^{10} - 37 x^{8} + 103 x^{6} - 16 x^{4} - 37 x^{2} + 1$ $2^{4}\cdot 3^{12}\cdot 5^{8}\cdot 83^{4}$ $(C_2^3\times C_4):S_4$ (as 16T1046) trivial $26730.7782372$
16.0.175...000.1 $x^{16} - 4 x^{14} + 13 x^{12} - 32 x^{10} + 47 x^{8} - 23 x^{6} - 16 x^{4} + 10 x^{2} + 5$ $2^{4}\cdot 3^{16}\cdot 5^{9}\cdot 19^{4}$ $C_2^2.C_2^8:C_{12}$ (as 16T1754) $[2]$ $2445.35583605$
16.0.181...304.1 $x^{16} - 3 x^{15} + 4 x^{14} - 6 x^{13} + 9 x^{12} - 33 x^{11} + 21 x^{10} + 62 x^{9} + 52 x^{8} - 107 x^{7} - 165 x^{6} - 43 x^{5} + 207 x^{4} + 269 x^{3} + 183 x^{2} + 53 x + 7$ $2^{4}\cdot 3^{10}\cdot 61^{8}$ $C_2^5:\SL(2,3)$ (as 16T1043) trivial $17889.335267$
16.0.382...864.1 $x^{16} - 5 x^{15} + 10 x^{14} - x^{13} - 30 x^{12} + 86 x^{11} - 131 x^{10} - 47 x^{9} + 421 x^{8} - 348 x^{7} - 226 x^{6} + 364 x^{5} + 9 x^{4} - 122 x^{3} - 2 x^{2} + 15 x + 7$ $2^{4}\cdot 3^{8}\cdot 19\cdot 61^{8}$ $C_2\wr C_2^3:C_3$ (as 16T1658) trivial $23250.7552186$
16.4.407...000.1 $x^{16} - 4 x^{15} + 7 x^{14} - 12 x^{13} + 21 x^{12} - 32 x^{11} + 37 x^{10} - 43 x^{9} + 56 x^{8} - 71 x^{7} + 73 x^{6} - 56 x^{5} + 41 x^{4} - 29 x^{3} + 18 x^{2} - 7 x + 1$ $2^{6}\cdot 5^{8}\cdot 7^{8}\cdot 41^{4}$ $C_2^4.C_2^6:A_4$ (as 16T1755) trivial $13320.5458717$
16.4.407...000.2 $x^{16} - 3 x^{15} + 6 x^{14} - 14 x^{13} + 11 x^{12} - 37 x^{11} + 52 x^{10} - 11 x^{9} + 95 x^{8} - 93 x^{7} + 23 x^{6} - 99 x^{5} + 76 x^{4} - 32 x^{3} + 14 x^{2} - x + 1$ $2^{6}\cdot 5^{8}\cdot 7^{8}\cdot 41^{4}$ $C_2^4.C_2^6:A_4$ (as 16T1755) trivial $14103.5084585$
16.0.630...000.2 $x^{16} - 5 x^{14} + 8 x^{12} + 21 x^{10} - 87 x^{8} + 54 x^{6} + 77 x^{4} + 56 x^{2} + 16$ $2^{6}\cdot 3^{12}\cdot 5^{8}\cdot 83^{4}$ $C_{2440}.D_6$ (as 16T1757) $[4]$ $5169.223676006028$
16.6.916...000.1 $x^{16} - 7 x^{14} - 3 x^{12} - 16 x^{10} - 3 x^{8} + 77 x^{6} + 94 x^{4} + 15 x^{2} - 9$ $-\,2^{4}\cdot 3^{2}\cdot 5^{8}\cdot 7^{8}\cdot 41^{4}$ $C_2\wr C_2^3.A_4$ (as 16T1806) trivial $28279.4844228$
16.2.916...000.1 $x^{16} - 7 x^{15} + 24 x^{14} - 53 x^{13} + 94 x^{12} - 134 x^{11} + 158 x^{10} - 202 x^{9} + 278 x^{8} - 215 x^{7} - 5 x^{6} + 133 x^{5} - 140 x^{4} + 118 x^{3} - 29 x^{2} - 36 x + 19$ $-\,2^{4}\cdot 3^{2}\cdot 5^{8}\cdot 7^{8}\cdot 41^{4}$ $C_2\wr C_2^3.A_4$ (as 16T1806) trivial $13054.3869353$
16.4.102...808.1 $x^{16} - 5 x^{15} + 6 x^{14} + 22 x^{13} - 85 x^{12} + 124 x^{11} - 42 x^{10} - 147 x^{9} + 308 x^{8} - 277 x^{7} + 122 x^{6} + 7 x^{5} - 33 x^{4} - 2 x^{2} + 2 x + 1$ $2^{11}\cdot 163^{8}$ $C_4^4:\SL(2,3)$ (as 16T1672) trivial $33686.2861815$
16.4.102...808.2 $x^{16} - 2 x^{15} - 9 x^{14} + 4 x^{13} + 44 x^{12} + 15 x^{11} - 66 x^{10} - 15 x^{9} + 72 x^{8} - 80 x^{7} - 100 x^{6} + 90 x^{5} + 5 x^{4} - 44 x^{3} + 20 x^{2} + 2$ $2^{11}\cdot 163^{8}$ $C_4^4:\SL(2,3)$ (as 16T1672) trivial $35982.33199$
16.0.152...456.1 $x^{16} + 5 x^{14} + 10 x^{12} + 17 x^{10} + 63 x^{8} + 208 x^{6} + 373 x^{4} + 286 x^{2} + 76$ $2^{6}\cdot 3^{8}\cdot 19\cdot 61^{8}$ $C_2\wr C_2^3:C_3$ (as 16T1658) trivial $49895.0781967$
16.8.163...736.1 $x^{16} - 2 x^{15} - 8 x^{14} + 20 x^{13} - 10 x^{12} - 5 x^{11} + 29 x^{10} - 61 x^{9} + 76 x^{8} - 61 x^{7} + 29 x^{6} - 5 x^{5} - 10 x^{4} + 20 x^{3} - 8 x^{2} - 2 x + 1$ $2^{4}\cdot 3^{12}\cdot 61^{8}$ $C_2^5:\SL(2,3)$ (as 16T1038) trivial $69299.1312854$
16.2.239...800.1 $x^{16} - 6 x^{15} + 23 x^{14} - 64 x^{13} + 151 x^{12} - 274 x^{11} + 431 x^{10} - 511 x^{9} + 515 x^{8} - 356 x^{7} + 173 x^{6} - 28 x^{5} - 73 x^{4} + 41 x^{3} - 43 x^{2} + 42 x + 27$ $-\,2^{6}\cdot 3\cdot 5^{2}\cdot 163^{8}$ $C_4^4.C_2\wr A_4$ (as 16T1845) trivial $78629.1223935$
16.6.239...800.1 $x^{16} - 8 x^{15} + 25 x^{14} - 34 x^{13} - 15 x^{12} + 163 x^{11} - 378 x^{10} + 545 x^{9} - 551 x^{8} + 392 x^{7} - 151 x^{6} - 67 x^{5} + 178 x^{4} - 161 x^{3} + 83 x^{2} - 24 x + 3$ $-\,2^{6}\cdot 3\cdot 5^{2}\cdot 163^{8}$ $C_4^4.C_2\wr A_4$ (as 16T1845) trivial $107491.557239$
16.4.491...464.1 $x^{16} - x^{14} - 5 x^{13} + 9 x^{12} + 2 x^{11} - 12 x^{10} + 123 x^{9} - 268 x^{8} + 218 x^{7} + 326 x^{6} - 943 x^{5} + 913 x^{4} - 440 x^{3} + 139 x^{2} - 23 x + 1$ $2^{6}\cdot 3^{8}\cdot 61^{9}$ $C_4^4.C_2\wr A_4$ (as 16T1845) trivial $165787.431062$
16.8.491...464.1 $x^{16} - 2 x^{15} - x^{14} + 7 x^{13} - 25 x^{12} + 5 x^{11} + 53 x^{10} - 85 x^{9} - 121 x^{8} - 179 x^{7} - 188 x^{6} + 129 x^{5} + 125 x^{4} + 48 x^{3} + 12 x^{2} - 64 x + 16$ $2^{6}\cdot 3^{8}\cdot 61^{9}$ $C_4^4.C_2\wr A_4$ (as 16T1845) trivial $132005.283179$
16.10.733...824.1 $x^{16} - 3 x^{14} - 26 x^{12} + 59 x^{10} + 72 x^{8} - 154 x^{6} + 42 x^{4} + 14 x^{2} - 1$ $-\,2^{4}\cdot 2777^{6}$ $C_2^8.\GL(2,3)$ (as 16T1761) trivial $158993.523161$
16.6.733...824.1 $x^{16} + 4 x^{14} - 16 x^{12} - 62 x^{10} + 15 x^{8} + 138 x^{6} + 54 x^{4} - 26 x^{2} - 1$ $-\,2^{4}\cdot 2777^{6}$ $C_2^8.\GL(2,3)$ (as 16T1761) trivial $78880.8978427$
16.6.106...816.1 $x^{16} - 2 x^{15} - 8 x^{14} + 17 x^{13} + 20 x^{12} - 44 x^{11} - 25 x^{10} + 22 x^{9} + 24 x^{8} + 68 x^{7} + 29 x^{6} - 133 x^{5} - 130 x^{4} + 48 x^{3} + 105 x^{2} + 38 x + 2$ $-\,2^{4}\cdot 11^{3}\cdot 163^{8}$ $C_4^4:\SL(2,3)$ (as 16T1672) trivial $248731.376036$
16.2.106...816.1 $x^{16} + 5 x^{14} - 4 x^{12} + 34 x^{10} - 138 x^{8} + 391 x^{6} - 292 x^{4} - 99 x^{2} - 44$ $-\,2^{4}\cdot 11^{3}\cdot 163^{8}$ $C_4^4:\SL(2,3)$ (as 16T1672) trivial $150584.377809$
16.4.127...000.1 $x^{16} - 3 x^{15} - x^{14} + 25 x^{13} - 50 x^{12} + 26 x^{11} + 80 x^{10} - 251 x^{9} + 397 x^{8} - 400 x^{7} + 305 x^{6} - 245 x^{5} + 211 x^{4} - 139 x^{3} + 56 x^{2} - 12 x + 1$ $2^{4}\cdot 3^{16}\cdot 5^{8}\cdot 83^{4}$ $(C_2^3\times C_4):S_4$ (as 16T1046) $[2]$ $25455.1890171$
16.4.146...624.1 $x^{16} - 4 x^{15} + 14 x^{14} - 27 x^{13} + 29 x^{12} - 53 x^{11} - 56 x^{10} + 51 x^{9} - 62 x^{8} + 189 x^{7} - 377 x^{6} + 269 x^{5} - 28 x^{4} - 57 x^{3} + 17 x^{2} + 10 x + 1$ $2^{4}\cdot 3^{14}\cdot 61^{8}$ $C_2^4.\SL(2,3)$ (as 16T732) trivial $47988.7675232$
16.4.195...752.1 $x^{16} + 2 x^{14} - 9 x^{13} + 3 x^{12} - 13 x^{11} + 29 x^{10} + 6 x^{9} + 65 x^{8} - 24 x^{7} - 184 x^{6} - 434 x^{5} - 495 x^{4} - 300 x^{3} - 64 x^{2} + 80 x + 16$ $2^{6}\cdot 43^{2}\cdot 2777^{5}$ $C_2^8.\GL(2,3)$ (as 16T1764) trivial $77085.8826838$
16.8.195...752.1 $x^{16} - 2 x^{15} - 5 x^{14} - 6 x^{13} - 11 x^{12} + 19 x^{11} + 60 x^{10} + 114 x^{9} + 195 x^{8} + 160 x^{7} + 106 x^{6} + 65 x^{5} - 82 x^{4} - 121 x^{3} - 37 x^{2} + x + 1$ $2^{6}\cdot 43^{2}\cdot 2777^{5}$ $C_2^8.\GL(2,3)$ (as 16T1764) trivial $201711.16828$
Next   displayed columns for results