Note: Search results may be incomplete. Given $p$-adic completions contain an unramified field and completions are only searched for ramified primes.
Refine search
Label | Polynomial | Discriminant | Galois group | Class group |
---|---|---|---|---|
3.1.104.1 | $x^{3} - x - 2$ | $-\,2^{3}\cdot 13$ | $S_3$ (as 3T2) | trivial |
3.1.116.1 | $x^{3} - x^{2} - 2$ | $-\,2^{2}\cdot 29$ | $S_3$ (as 3T2) | trivial |
3.1.152.1 | $x^{3} - x^{2} - 2 x - 2$ | $-\,2^{3}\cdot 19$ | $S_3$ (as 3T2) | trivial |
3.1.200.1 | $x^{3} - x^{2} + 2 x + 2$ | $-\,2^{3}\cdot 5^{2}$ | $S_3$ (as 3T2) | trivial |
3.1.212.1 | $x^{3} - x^{2} + 4 x - 2$ | $-\,2^{2}\cdot 53$ | $S_3$ (as 3T2) | trivial |
3.1.216.1 | $x^{3} + 3 x - 2$ | $-\,2^{3}\cdot 3^{3}$ | $S_3$ (as 3T2) | trivial |
3.1.244.1 | $x^{3} + x - 6$ | $-\,2^{2}\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.3.316.1 | $x^{3} - x^{2} - 4 x + 2$ | $2^{2}\cdot 79$ | $S_3$ (as 3T2) | trivial |
3.1.324.1 | $x^{3} - 3 x - 4$ | $-\,2^{2}\cdot 3^{4}$ | $S_3$ (as 3T2) | trivial |
3.1.356.1 | $x^{3} - x^{2} + x + 7$ | $-\,2^{2}\cdot 89$ | $S_3$ (as 3T2) | trivial |
3.1.424.1 | $x^{3} - x^{2} + 8$ | $-\,2^{3}\cdot 53$ | $S_3$ (as 3T2) | trivial |
3.1.436.1 | $x^{3} + x - 4$ | $-\,2^{2}\cdot 109$ | $S_3$ (as 3T2) | trivial |
3.1.440.1 | $x^{3} + 2 x - 8$ | $-\,2^{3}\cdot 5\cdot 11$ | $S_3$ (as 3T2) | trivial |
3.1.472.1 | $x^{3} - 5 x - 6$ | $-\,2^{3}\cdot 59$ | $S_3$ (as 3T2) | trivial |
3.1.484.1 | $x^{3} - x^{2} + 4 x + 2$ | $-\,2^{2}\cdot 11^{2}$ | $S_3$ (as 3T2) | trivial |
3.1.516.1 | $x^{3} - x^{2} + x - 9$ | $-\,2^{2}\cdot 3\cdot 43$ | $S_3$ (as 3T2) | trivial |
3.3.568.1 | $x^{3} - x^{2} - 6 x - 2$ | $2^{3}\cdot 71$ | $S_3$ (as 3T2) | trivial |
3.1.628.1 | $x^{3} - x^{2} + 4 x + 8$ | $-\,2^{2}\cdot 157$ | $S_3$ (as 3T2) | trivial |
3.1.648.1 | $x^{3} - 3 x - 10$ | $-\,2^{3}\cdot 3^{4}$ | $S_3$ (as 3T2) | $[3]$ |
3.1.676.1 | $x^{3} - x^{2} - 4 x + 12$ | $-\,2^{2}\cdot 13^{2}$ | $S_3$ (as 3T2) | $[3]$ |
3.1.680.1 | $x^{3} - x^{2} - 6 x + 10$ | $-\,2^{3}\cdot 5\cdot 17$ | $S_3$ (as 3T2) | trivial |
3.1.696.1 | $x^{3} - x^{2} - 2 x + 6$ | $-\,2^{3}\cdot 3\cdot 29$ | $S_3$ (as 3T2) | trivial |
3.1.728.1 | $x^{3} - x^{2} + 6 x - 2$ | $-\,2^{3}\cdot 7\cdot 13$ | $S_3$ (as 3T2) | trivial |
3.1.744.1 | $x^{3} - x^{2} - 6 x - 6$ | $-\,2^{3}\cdot 3\cdot 31$ | $S_3$ (as 3T2) | trivial |
3.1.756.1 | $x^{3} - 6 x - 12$ | $-\,2^{2}\cdot 3^{3}\cdot 7$ | $S_3$ (as 3T2) | trivial |
3.1.804.1 | $x^{3} - x^{2} + 4 x - 6$ | $-\,2^{2}\cdot 3\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.1.808.1 | $x^{3} - x^{2} + 2 x - 6$ | $-\,2^{3}\cdot 101$ | $S_3$ (as 3T2) | trivial |
3.1.856.1 | $x^{3} - x^{2} + x + 11$ | $-\,2^{3}\cdot 107$ | $S_3$ (as 3T2) | trivial |
3.1.888.1 | $x^{3} - x^{2} + 9 x + 3$ | $-\,2^{3}\cdot 3\cdot 37$ | $S_3$ (as 3T2) | trivial |
3.3.892.1 | $x^{3} - x^{2} - 8 x + 10$ | $2^{2}\cdot 223$ | $S_3$ (as 3T2) | trivial |
3.1.932.1 | $x^{3} + 5 x - 4$ | $-\,2^{2}\cdot 233$ | $S_3$ (as 3T2) | trivial |
3.3.940.1 | $x^{3} - 7 x - 4$ | $2^{2}\cdot 5\cdot 47$ | $S_3$ (as 3T2) | trivial |
3.1.948.1 | $x^{3} - x^{2} + 6$ | $-\,2^{2}\cdot 3\cdot 79$ | $S_3$ (as 3T2) | trivial |
3.1.964.1 | $x^{3} - 2 x - 12$ | $-\,2^{2}\cdot 241$ | $S_3$ (as 3T2) | trivial |
3.1.980.1 | $x^{3} - x^{2} + 5 x - 13$ | $-\,2^{2}\cdot 5\cdot 7^{2}$ | $S_3$ (as 3T2) | $[3]$ |
3.1.984.1 | $x^{3} - x^{2} - 12$ | $-\,2^{3}\cdot 3\cdot 41$ | $S_3$ (as 3T2) | trivial |
3.1.996.1 | $x^{3} - x^{2} - 6$ | $-\,2^{2}\cdot 3\cdot 83$ | $S_3$ (as 3T2) | trivial |
3.3.1016.1 | $x^{3} - x^{2} - 6 x + 2$ | $2^{3}\cdot 127$ | $S_3$ (as 3T2) | trivial |
3.1.1048.1 | $x^{3} - x^{2} + 8 x - 12$ | $-\,2^{3}\cdot 131$ | $S_3$ (as 3T2) | trivial |
3.1.1080.1 | $x^{3} + 3 x - 6$ | $-\,2^{3}\cdot 3^{3}\cdot 5$ | $S_3$ (as 3T2) | trivial |
3.1.1096.1 | $x^{3} - x^{2} + x - 13$ | $-\,2^{3}\cdot 137$ | $S_3$ (as 3T2) | trivial |
3.1.1108.1 | $x^{3} - x^{2} - 8 x + 14$ | $-\,2^{2}\cdot 277$ | $S_3$ (as 3T2) | trivial |
3.1.1144.1 | $x^{3} - x^{2} + 6 x + 2$ | $-\,2^{3}\cdot 11\cdot 13$ | $S_3$ (as 3T2) | trivial |
3.1.1172.1 | $x^{3} - x^{2} + 5 x + 11$ | $-\,2^{2}\cdot 293$ | $S_3$ (as 3T2) | trivial |
3.1.1176.1 | $x^{3} - x^{2} - 2 x - 6$ | $-\,2^{3}\cdot 3\cdot 7^{2}$ | $S_3$ (as 3T2) | $[3]$ |
3.1.1188.1 | $x^{3} + 6 x - 12$ | $-\,2^{2}\cdot 3^{3}\cdot 11$ | $S_3$ (as 3T2) | trivial |
3.1.1192.1 | $x^{3} - x^{2} + 2 x + 6$ | $-\,2^{3}\cdot 149$ | $S_3$ (as 3T2) | $[2]$ |
3.1.1208.1 | $x^{3} - x^{2} + 8 x + 8$ | $-\,2^{3}\cdot 151$ | $S_3$ (as 3T2) | trivial |
3.1.1236.1 | $x^{3} - x^{2} + 4 x + 12$ | $-\,2^{2}\cdot 3\cdot 103$ | $S_3$ (as 3T2) | trivial |
3.1.1272.1 | $x^{3} - x^{2} - 3 x + 15$ | $-\,2^{3}\cdot 3\cdot 53$ | $S_3$ (as 3T2) | trivial |