Learn more

Refine search


Results (1-50 of at least 1000)

Next   To download results, determine the number of results.
Label Polynomial Discriminant Galois group Class group
3.1.1351.1 x3 - x2 - 7 \( -\,7\cdot 193 \) $S_3$ (as 3T2) trivial
3.1.2316.1 x3 - x2 + x + 9 \( -\,2^{2}\cdot 3\cdot 193 \) $S_3$ (as 3T2) trivial
3.1.2895.1 x3 + 3x - 31 \( -\,3\cdot 5\cdot 193 \) $S_3$ (as 3T2) trivial
3.3.3281.1 x3 - x2 - 14x - 13 \( 17\cdot 193 \) $S_3$ (as 3T2) trivial
3.1.4632.1 x3 - x2 + 17x - 5 \( -\,2^{3}\cdot 3\cdot 193 \) $S_3$ (as 3T2) trivial
3.3.4825.1 x3 - x2 - 18x - 8 \( 5^{2}\cdot 193 \) $S_3$ (as 3T2) trivial
3.1.5211.1 x3 - 6x - 15 \( -\,3^{3}\cdot 193 \) $S_3$ (as 3T2) trivial
3.1.8492.1 x3 - 4x - 18 \( -\,2^{2}\cdot 11\cdot 193 \) $S_3$ (as 3T2) $[2]$
3.1.9071.1 x3 - x2 + 8x - 19 \( -\,47\cdot 193 \) $S_3$ (as 3T2) $[2]$
3.1.9843.1 x3 - x2 + 11x + 10 \( -\,3\cdot 17\cdot 193 \) $S_3$ (as 3T2) $[2]$
3.1.10615.1 x3 - x2 - 10x + 27 \( -\,5\cdot 11\cdot 193 \) $S_3$ (as 3T2) trivial
3.1.10808.1 x3 + 2x - 40 \( -\,2^{3}\cdot 7\cdot 193 \) $S_3$ (as 3T2) trivial
3.3.14089.1 x3 - x2 - 22x + 41 \( 73\cdot 193 \) $S_3$ (as 3T2) trivial
3.1.14668.1 x3 - x2 + 29x - 47 \( -\,2^{2}\cdot 19\cdot 193 \) $S_3$ (as 3T2) trivial
3.3.14668.1 x3 - x2 - 28x + 44 \( 2^{2}\cdot 19\cdot 193 \) $S_3$ (as 3T2) trivial
3.1.16019.1 x3 - x2 - 21x - 38 \( -\,83\cdot 193 \) $S_3$ (as 3T2) trivial
3.1.16984.1 x3 - x2 - 32x - 76 \( -\,2^{3}\cdot 11\cdot 193 \) $S_3$ (as 3T2) trivial
3.1.19300.1 x3 - x2 - 8x - 78 \( -\,2^{2}\cdot 5^{2}\cdot 193 \) $S_3$ (as 3T2) trivial
3.1.20651.1 x3 - x2 + 20x - 112 \( -\,107\cdot 193 \) $S_3$ (as 3T2) trivial
3.1.20844.1 x3 + 12x - 138 \( -\,2^{2}\cdot 3^{3}\cdot 193 \) $S_3$ (as 3T2) $[3]$
3.1.20844.2 x3 + 24x - 70 \( -\,2^{2}\cdot 3^{3}\cdot 193 \) $S_3$ (as 3T2) $[3]$
3.3.21809.1 x3 - x2 - 40x - 81 \( 113\cdot 193 \) $S_3$ (as 3T2) trivial
3.1.22195.1 x3 - x2 + 5x - 30 \( -\,5\cdot 23\cdot 193 \) $S_3$ (as 3T2) $[4]$
3.1.22967.1 x3 + 23x - 40 \( -\,7\cdot 17\cdot 193 \) $S_3$ (as 3T2) trivial
3.3.23353.1 x3 - x2 - 18x + 13 \( 11^{2}\cdot 193 \) $S_3$ (as 3T2) trivial
3.1.25283.1 x3 + 2x - 153 \( -\,131\cdot 193 \) $S_3$ (as 3T2) trivial
3.1.25476.1 x3 - x2 + 36x - 54 \( -\,2^{2}\cdot 3\cdot 11\cdot 193 \) $S_3$ (as 3T2) $[2]$
3.1.26248.1 x3 - x2 + 17x + 51 \( -\,2^{3}\cdot 17\cdot 193 \) $S_3$ (as 3T2) trivial
3.1.27020.1 x3 + 32x - 142 \( -\,2^{2}\cdot 5\cdot 7\cdot 193 \) $S_3$ (as 3T2) trivial
3.3.27213.1 x3 - x2 - 33x + 78 \( 3\cdot 47\cdot 193 \) $S_3$ (as 3T2) trivial
3.1.28371.1 x3 - x2 - 37x + 106 \( -\,3\cdot 7^{2}\cdot 193 \) $S_3$ (as 3T2) $[6]$
3.1.28564.1 x3 - x2 + 21x - 61 \( -\,2^{2}\cdot 37\cdot 193 \) $S_3$ (as 3T2) trivial
3.1.29915.1 x3 - x2 + 29x + 146 \( -\,5\cdot 31\cdot 193 \) $S_3$ (as 3T2) trivial
3.1.30687.1 x3 - x2 - 2x - 33 \( -\,3\cdot 53\cdot 193 \) $S_3$ (as 3T2) trivial
3.1.31652.1 x3 - x2 + 48x - 68 \( -\,2^{2}\cdot 41\cdot 193 \) $S_3$ (as 3T2) trivial
3.1.33196.1 x3 - 32x - 78 \( -\,2^{2}\cdot 43\cdot 193 \) $S_3$ (as 3T2) trivial
3.1.35319.1 x3 - 9x - 109 \( -\,3\cdot 61\cdot 193 \) $S_3$ (as 3T2) trivial
3.3.36477.1 x3 - 48x - 65 \( 3^{3}\cdot 7\cdot 193 \) $S_3$ (as 3T2) trivial
3.1.38407.1 x3 - x2 - 2x - 37 \( -\,193\cdot 199 \) $S_3$ (as 3T2) trivial
3.1.41495.1 x3 - x2 + 64x - 35 \( -\,5\cdot 43\cdot 193 \) $S_3$ (as 3T2) trivial
3.1.42267.1 x3 - x2 - 15x + 126 \( -\,3\cdot 73\cdot 193 \) $S_3$ (as 3T2) $[8]$
3.1.44004.1 x3 + 9x - 242 \( -\,2^{2}\cdot 3\cdot 19\cdot 193 \) $S_3$ (as 3T2) $[3]$
3.1.44004.2 x3 - 18x - 244 \( -\,2^{2}\cdot 3\cdot 19\cdot 193 \) $S_3$ (as 3T2) $[3]$
3.1.44004.3 x3 - x2 - 52x + 184 \( -\,2^{2}\cdot 3\cdot 19\cdot 193 \) $S_3$ (as 3T2) $[21]$
3.1.44004.4 x3 - x2 + x - 81 \( -\,2^{2}\cdot 3\cdot 19\cdot 193 \) $S_3$ (as 3T2) $[3]$
3.1.45355.1 x3 - 2x - 41 \( -\,5\cdot 47\cdot 193 \) $S_3$ (as 3T2) trivial
3.1.45548.1 x3 - 28x - 100 \( -\,2^{2}\cdot 59\cdot 193 \) $S_3$ (as 3T2) trivial
3.1.46899.1 x3 - 18x - 51 \( -\,3^{5}\cdot 193 \) $S_3$ (as 3T2) trivial
3.1.46899.2 x3 - 36x - 93 \( -\,3^{5}\cdot 193 \) $S_3$ (as 3T2) trivial
3.1.46899.3 x3 - 9x - 84 \( -\,3^{5}\cdot 193 \) $S_3$ (as 3T2) trivial
Next   To download results, determine the number of results.