Label |
Polynomial |
Degree |
Signature |
Discriminant |
Ram. prime count |
Root discriminant |
CM field |
Galois |
Monogenic |
Galois group |
Class group |
Unit group torsion |
Unit group rank |
Regulator |
6.2.534837384.2 |
x6 - x5 + 2x4 - 30x3 + 18x2 + 33x + 45 |
$6$ |
[2,2] |
$2^{3}\cdot 3^{3}\cdot 19^{5}$ |
$3$ |
$28.4907332113$ |
|
|
? |
$S_6$ (as 6T16) |
$[3]$ |
$2$ |
$3$ |
$159.127026441$ |
6.2.633881344.2 |
x6 - 2x5 + 8x4 - 12x3 + 22x2 - 8x - 8 |
$6$ |
[2,2] |
$2^{8}\cdot 19^{5}$ |
$2$ |
$29.3090220978$ |
|
|
? |
$\PGL(2,5)$ (as 6T14) |
$[6]$ |
$2$ |
$3$ |
$113.031755732$ |
6.2.3961758400.1 |
x6 - 2x5 - 11x4 + 26x3 - 16x2 - 8x - 8 |
$6$ |
[2,2] |
$2^{6}\cdot 5^{2}\cdot 19^{5}$ |
$3$ |
$39.7784629537$ |
|
|
? |
$S_6$ (as 6T16) |
$[3]$ |
$2$ |
$3$ |
$697.576218436$ |
6.2.4813536456.1 |
x6 - 2x5 - 11x4 - 12x3 - 92x2 - 8x - 160 |
$6$ |
[2,2] |
$2^{3}\cdot 3^{5}\cdot 19^{5}$ |
$3$ |
$41.0907477317$ |
|
|
? |
$S_6$ (as 6T16) |
$[3]$ |
$2$ |
$3$ |
$756.393917192$ |
6.4.4912580416.1 |
x6 - 2x5 - 11x4 + 26x3 + 22x2 - 84x - 27 |
$6$ |
[4,1] |
$-\,2^{6}\cdot 19^{5}\cdot 31$ |
$3$ |
$41.2304693606$ |
|
|
|
$C_3^2:D_4$ (as 6T13) |
$[3]$ |
$2$ |
$4$ |
$835.230009562$ |
6.2.6128345025.2 |
x6 - 2x5 - 11x4 - 31x3 + 22x2 - 8x - 8 |
$6$ |
[2,2] |
$3^{2}\cdot 5^{2}\cdot 11\cdot 19^{5}$ |
$4$ |
$42.7783341002$ |
|
|
? |
$S_4\times C_2$ (as 6T11) |
$[3]$ |
$2$ |
$3$ |
$189.09599892$ |
6.2.6814224448.2 |
x6 - 2x5 + 8x4 - 50x3 + 60x2 + 68x - 103 |
$6$ |
[2,2] |
$2^{6}\cdot 19^{5}\cdot 43$ |
$3$ |
$43.5414351024$ |
|
|
? |
$S_6$ (as 6T16) |
$[3]$ |
$2$ |
$3$ |
$434.27148629$ |
6.2.7118784625.1 |
x6 + 95x2 - 171x - 475 |
$6$ |
[2,2] |
$5^{3}\cdot 19^{5}\cdot 23$ |
$3$ |
$43.8599005192$ |
|
|
? |
$S_6$ (as 6T16) |
$[3]$ |
$2$ |
$3$ |
$359.511674396$ |
6.2.8666346500.1 |
x6 - 3x5 - x4 - 12x3 - 24x2 + 20x + 600 |
$6$ |
[2,2] |
$2^{2}\cdot 5^{3}\cdot 7\cdot 19^{5}$ |
$4$ |
$45.3216808469$ |
|
|
? |
$S_6$ (as 6T16) |
$[3]$ |
$2$ |
$3$ |
$1620.12942168$ |
6.2.11568334528.1 |
x6 - 2x5 - 11x4 - 50x3 - 149x2 - 84x + 144 |
$6$ |
[2,2] |
$2^{6}\cdot 19^{5}\cdot 73$ |
$3$ |
$47.5567104631$ |
|
|
|
$S_6$ (as 6T16) |
$[3]$ |
$2$ |
$3$ |
$249.342205207$ |
6.2.15213152256.1 |
x6 - 19x4 - 76x3 - 152x2 - 152x - 76 |
$6$ |
[2,2] |
$2^{11}\cdot 3\cdot 19^{5}$ |
$3$ |
$49.7778959187$ |
|
|
? |
$C_3^2:D_4$ (as 6T13) |
$[6]$ |
$2$ |
$3$ |
$426.909953131$ |
6.2.16478438845.1 |
x6 - 3x5 - x4 - 12x3 + 90x2 - 531x - 844 |
$6$ |
[2,2] |
$5\cdot 11^{3}\cdot 19^{5}$ |
$3$ |
$50.4451414438$ |
|
|
? |
$C_3^2:D_4$ (as 6T13) |
$[3]$ |
$2$ |
$3$ |
$838.865543378$ |
6.0.18385035075.2 |
x6 - 2x5 + 27x4 + 64x3 + 193x2 + 885x + 1455 |
$6$ |
[0,3] |
$-\,3^{3}\cdot 5^{2}\cdot 11\cdot 19^{5}$ |
$4$ |
$51.3740823017$ |
|
|
? |
$S_4\times C_2$ (as 6T11) |
$[2, 6]$ |
$2$ |
$2$ |
$132.572166575$ |
6.2.18451889748.1 |
x6 - x5 + 2x4 + 27x3 + 94x2 + 52x - 88 |
$6$ |
[2,2] |
$2^{2}\cdot 3^{4}\cdot 19^{5}\cdot 23$ |
$4$ |
$51.4051710383$ |
|
|
? |
$S_6$ (as 6T16) |
$[3]$ |
$2$ |
$3$ |
$840.687477542$ |
6.6.19174910656.1 |
x6 - 19x4 + 76x2 - 76 |
$6$ |
[6,0] |
$2^{6}\cdot 11^{2}\cdot 19^{5}$ |
$3$ |
$51.7355286865$ |
|
|
|
$D_{6}$ (as 6T3) |
$[3]$ |
$2$ |
$5$ |
$5719.47951675$ |
6.2.19174910656.4 |
x6 + 19x4 - 361x2 - 171 |
$6$ |
[2,2] |
$2^{6}\cdot 11^{2}\cdot 19^{5}$ |
$3$ |
$51.7355286865$ |
|
|
|
$S_4\times C_2$ (as 6T11) |
$[12]$ |
$2$ |
$3$ |
$402.263967446$ |
6.0.20284203008.1 |
x6 + 19x4 + 95x2 - 304x + 285 |
$6$ |
[0,3] |
$-\,2^{13}\cdot 19^{5}$ |
$2$ |
$52.2227404338$ |
|
|
? |
$\PGL(2,5)$ (as 6T14) |
$[6]$ |
$2$ |
$2$ |
$808.149034895$ |
6.2.20858657976.1 |
x6 - x5 - 17x4 + 27x3 - 39x2 + 90x - 126 |
$6$ |
[2,2] |
$2^{3}\cdot 3^{4}\cdot 13\cdot 19^{5}$ |
$4$ |
$52.466375178$ |
|
|
? |
$S_6$ (as 6T16) |
$[6]$ |
$2$ |
$3$ |
$724.042010408$ |
6.2.23780454796.1 |
x6 + 19x4 - 57x2 - 475 |
$6$ |
[2,2] |
$2^{2}\cdot 7^{4}\cdot 19^{5}$ |
$3$ |
$53.6253359589$ |
|
|
|
$A_4\times C_2$ (as 6T6) |
$[3]$ |
$2$ |
$3$ |
$5996.84996624$ |
6.4.25355253760.1 |
x6 - 2x5 - 30x4 + 64x3 - 35x2 - 46x + 30 |
$6$ |
[4,1] |
$-\,2^{11}\cdot 5\cdot 19^{5}$ |
$3$ |
$54.2015026594$ |
|
|
? |
$C_3^2:D_4$ (as 6T13) |
$[3]$ |
$2$ |
$4$ |
$2689.24599578$ |
6.2.30641725125.1 |
x6 - 3x5 + 18x4 - 31x3 + 33x2 - 18x - 1319 |
$6$ |
[2,2] |
$3^{2}\cdot 5^{3}\cdot 11\cdot 19^{5}$ |
$4$ |
$55.9395371602$ |
|
|
|
$S_4\times C_2$ (as 6T11) |
$[12]$ |
$2$ |
$3$ |
$542.30785163$ |
6.2.31060185856.1 |
x6 - 38x2 - 76x - 76 |
$6$ |
[2,2] |
$2^{8}\cdot 7^{2}\cdot 19^{5}$ |
$3$ |
$56.0661423075$ |
|
|
? |
$S_6$ (as 6T16) |
$[3]$ |
$2$ |
$3$ |
$1209.54364148$ |
6.2.35655825600.1 |
x6 + 19x4 + 95x2 - 475 |
$6$ |
[2,2] |
$2^{6}\cdot 3^{2}\cdot 5^{2}\cdot 19^{5}$ |
$4$ |
$57.3704711025$ |
|
|
? |
$S_4\times C_2$ (as 6T11) |
$[3]$ |
$2$ |
$3$ |
$1644.4006436$ |
6.2.35655825600.2 |
x6 - 19x4 + 114x2 - 171 |
$6$ |
[2,2] |
$2^{6}\cdot 3^{2}\cdot 5^{2}\cdot 19^{5}$ |
$4$ |
$57.3704711025$ |
|
|
|
$D_{6}$ (as 6T3) |
$[3]$ |
$2$ |
$3$ |
$1972.24509379$ |
6.6.41615795893.1 |
x6 - x5 - 55x4 + 160x3 - 20x2 - 176x + 64 |
$6$ |
[6,0] |
$7^{5}\cdot 19^{5}$ |
$2$ |
$58.867605049$ |
|
✓ |
|
$C_6$ (as 6T1) |
$[3]$ |
$2$ |
$5$ |
$959.925845269$ |
6.2.45797927104.1 |
x6 + 19x4 - 38x3 + 19x2 + 114x - 171 |
$6$ |
[2,2] |
$2^{6}\cdot 17^{2}\cdot 19^{5}$ |
$3$ |
$59.8146597889$ |
|
|
? |
$S_6$ (as 6T16) |
$[3]$ |
$2$ |
$3$ |
$1157.98690964$ |
6.2.46590278784.1 |
x6 - 2x5 + 8x4 - 12x3 + 212x2 + 676x + 201 |
$6$ |
[2,2] |
$2^{7}\cdot 3\cdot 7^{2}\cdot 19^{5}$ |
$4$ |
$59.9859053877$ |
|
|
? |
$S_6$ (as 6T16) |
$[3]$ |
$2$ |
$3$ |
$2528.1571341$ |
6.4.47541100800.1 |
x6 - 2x5 - 11x4 - 12x3 + 41x2 + 30x - 27 |
$6$ |
[4,1] |
$-\,2^{8}\cdot 3\cdot 5^{2}\cdot 19^{5}$ |
$4$ |
$60.1882254292$ |
|
|
? |
$C_3^2:D_4$ (as 6T13) |
$[3]$ |
$2$ |
$4$ |
$8194.77143013$ |
6.4.47560909592.1 |
x6 - 19x4 - 190x2 + 608 |
$6$ |
[4,1] |
$-\,2^{3}\cdot 7^{4}\cdot 19^{5}$ |
$3$ |
$60.1924044417$ |
|
|
|
$A_4\times C_2$ (as 6T6) |
$[3]$ |
$2$ |
$4$ |
$8085.12385601$ |
6.2.51344388864.4 |
x6 - 2x5 + 8x4 + 26x3 + 174x2 + 144x + 30 |
$6$ |
[2,2] |
$2^{8}\cdot 3^{4}\cdot 19^{5}$ |
$3$ |
$60.9652227351$ |
|
|
? |
$S_3^2$ (as 6T9) |
$[3]$ |
$2$ |
$3$ |
$2268.44822234$ |
6.2.51344388864.5 |
x6 - 2x5 - 30x4 + 64x3 + 250x2 - 654x + 201 |
$6$ |
[2,2] |
$2^{8}\cdot 3^{4}\cdot 19^{5}$ |
$3$ |
$60.9652227351$ |
|
|
? |
$S_6$ (as 6T16) |
$[6]$ |
$2$ |
$3$ |
$1376.0797137$ |
6.2.51978270208.1 |
x6 - 2x5 + 8x4 - 50x3 - 149x2 + 220x + 486 |
$6$ |
[2,2] |
$2^{9}\cdot 19^{5}\cdot 41$ |
$3$ |
$61.0900251243$ |
|
|
? |
$S_6$ (as 6T16) |
$[3]$ |
$2$ |
$3$ |
$1328.1760895$ |
6.6.52731004304.1 |
x6 - 2x5 - 30x4 + 64x3 + 155x2 - 198x - 198 |
$6$ |
[6,0] |
$2^{4}\cdot 11^{3}\cdot 19^{5}$ |
$3$ |
$61.2365911879$ |
|
|
|
$D_{6}$ (as 6T3) |
$[3]$ |
$2$ |
$5$ |
$11226.6000977$ |
6.2.52731004304.1 |
x6 - 3x5 + 37x4 - 69x3 + 128x2 - 94x - 8 |
$6$ |
[2,2] |
$2^{4}\cdot 11^{3}\cdot 19^{5}$ |
$3$ |
$61.2365911879$ |
|
|
|
$S_4\times C_2$ (as 6T11) |
$[12]$ |
$2$ |
$3$ |
$2065.04544679$ |
6.0.53562973568.1 |
x6 - 19x4 + 171x2 - 304x + 247 |
$6$ |
[0,3] |
$-\,2^{7}\cdot 13^{2}\cdot 19^{5}$ |
$3$ |
$61.3965705349$ |
|
|
? |
$S_6$ (as 6T16) |
$[6]$ |
$2$ |
$2$ |
$430.158825028$ |
6.2.54355325248.1 |
x6 - 3x5 - 20x4 + 45x3 - 62x2 + 39x - 27 |
$6$ |
[2,2] |
$2^{6}\cdot 7^{3}\cdot 19^{5}$ |
$3$ |
$61.5470180832$ |
|
|
|
$D_{6}$ (as 6T3) |
$[12]$ |
$2$ |
$3$ |
$1404.1136062$ |
6.2.54355325248.4 |
x6 - x5 + 2x4 + 65x3 - 267x2 + 546x - 202 |
$6$ |
[2,2] |
$2^{6}\cdot 7^{3}\cdot 19^{5}$ |
$3$ |
$61.5470180832$ |
|
|
? |
$S_4\times C_2$ (as 6T11) |
$[2, 6]$ |
$2$ |
$3$ |
$818.69084113$ |
6.2.54355325248.5 |
x6 - x5 - 17x4 + 8x3 + 56x2 + 128x + 64 |
$6$ |
[2,2] |
$2^{6}\cdot 7^{3}\cdot 19^{5}$ |
$3$ |
$61.5470180832$ |
|
|
|
$S_3^2$ (as 6T9) |
$[3]$ |
$2$ |
$3$ |
$539.922132685$ |
6.2.54355325248.6 |
x6 - 2x5 + 8x4 - 88x3 + 60x2 - 388x + 1284 |
$6$ |
[2,2] |
$2^{6}\cdot 7^{3}\cdot 19^{5}$ |
$3$ |
$61.5470180832$ |
|
|
? |
$\PGL(2,5)$ (as 6T14) |
$[3]$ |
$2$ |
$3$ |
$1147.91732454$ |
6.0.54513795584.1 |
x6 + 19x4 - 38x3 + 190x2 - 228x + 190 |
$6$ |
[0,3] |
$-\,2^{9}\cdot 19^{5}\cdot 43$ |
$3$ |
$61.576888047$ |
|
|
? |
$S_6$ (as 6T16) |
$[6]$ |
$2$ |
$2$ |
$327.644147829$ |
6.0.58497838875.1 |
x6 - 2x5 + 8x4 - 69x3 + 288x2 - 312x + 201 |
$6$ |
[0,3] |
$-\,3^{3}\cdot 5^{3}\cdot 7\cdot 19^{5}$ |
$4$ |
$62.3050578588$ |
|
|
? |
$S_4\times C_2$ (as 6T11) |
$[2, 6]$ |
$2$ |
$2$ |
$121.611553458$ |
6.4.59426376000.1 |
x6 - 2x5 - 30x4 + 140x3 - 320x2 + 144x - 8 |
$6$ |
[4,1] |
$-\,2^{6}\cdot 3\cdot 5^{3}\cdot 19^{5}$ |
$4$ |
$62.4688063776$ |
|
|
? |
$C_3^2:D_4$ (as 6T13) |
$[3]$ |
$2$ |
$4$ |
$2739.11375419$ |
6.0.62120371712.1 |
x6 - 38x4 + 361x2 + 1368 |
$6$ |
[0,3] |
$-\,2^{9}\cdot 7^{2}\cdot 19^{5}$ |
$3$ |
$62.9321169352$ |
|
|
|
$D_{6}$ (as 6T3) |
$[6, 12]$ |
$2$ |
$2$ |
$272.471038135$ |
6.0.62120371712.2 |
x6 - 209x2 - 228x + 2052 |
$6$ |
[0,3] |
$-\,2^{9}\cdot 7^{2}\cdot 19^{5}$ |
$3$ |
$62.9321169352$ |
|
|
|
$S_4\times C_2$ (as 6T11) |
$[2, 2, 6]$ |
$2$ |
$2$ |
$561.918714263$ |
6.2.63388134400.1 |
x6 - 2x5 + 27x4 - 88x3 + 60x2 - 3200x - 7418 |
$6$ |
[2,2] |
$2^{10}\cdot 5^{2}\cdot 19^{5}$ |
$3$ |
$63.1443739384$ |
|
|
? |
$D_{6}$ (as 6T3) |
$[3]$ |
$2$ |
$3$ |
$5401.27263399$ |
6.2.63388134400.4 |
x6 - 19x4 + 285x2 - 475 |
$6$ |
[2,2] |
$2^{10}\cdot 5^{2}\cdot 19^{5}$ |
$3$ |
$63.1443739384$ |
|
|
|
$S_4\times C_2$ (as 6T11) |
$[3]$ |
$2$ |
$3$ |
$4090.27517667$ |
6.2.67944156560.1 |
x6 - 2x5 + 8x4 + 64x3 - 92x2 - 616x - 768 |
$6$ |
[2,2] |
$2^{4}\cdot 5\cdot 7^{3}\cdot 19^{5}$ |
$4$ |
$63.8790847934$ |
|
|
? |
$S_6$ (as 6T16) |
$[6]$ |
$2$ |
$3$ |
$1928.68679706$ |
6.4.68459185152.1 |
x6 - 38x4 + 57x2 - 304x - 76 |
$6$ |
[4,1] |
$-\,2^{10}\cdot 3^{3}\cdot 19^{5}$ |
$3$ |
$63.9595335163$ |
|
|
? |
$C_3^2:D_4$ (as 6T13) |
$[6]$ |
$2$ |
$4$ |
$3677.95336687$ |
6.2.80225607600.1 |
x6 - 76x3 - 57x2 + 570x + 190 |
$6$ |
[2,2] |
$2^{4}\cdot 3^{4}\cdot 5^{2}\cdot 19^{5}$ |
$4$ |
$65.672795373$ |
|
|
|
$S_6$ (as 6T16) |
$[6]$ |
$2$ |
$3$ |
$3916.60552535$ |
6.2.83434631904.1 |
x6 - x5 + 2x4 + 27x3 + 37x2 + 52x + 26 |
$6$ |
[2,2] |
$2^{5}\cdot 3^{4}\cdot 13\cdot 19^{5}$ |
$4$ |
$66.1034904985$ |
|
|
? |
$S_6$ (as 6T16) |
$[3]$ |
$2$ |
$3$ |
$3824.54825276$ |