## Results (1-50 of at least 1000)

Next   To download results, determine the number of results.
Label Polynomial Discriminant Galois group Class group
6.2.534837384.2 x6 - x5 + 2x4 - 30x3 + 18x2 + 33x + 45 $2^{3}\cdot 3^{3}\cdot 19^{5}$ $S_6$ (as 6T16) $[3]$
6.2.633881344.2 x6 - 2x5 + 8x4 - 12x3 + 22x2 - 8x - 8 $2^{8}\cdot 19^{5}$ $\PGL(2,5)$ (as 6T14) $[6]$
6.2.3961758400.1 x6 - 2x5 - 11x4 + 26x3 - 16x2 - 8x - 8 $2^{6}\cdot 5^{2}\cdot 19^{5}$ $S_6$ (as 6T16) $[3]$
6.2.4813536456.1 x6 - 2x5 - 11x4 - 12x3 - 92x2 - 8x - 160 $2^{3}\cdot 3^{5}\cdot 19^{5}$ $S_6$ (as 6T16) $[3]$
6.4.4912580416.1 x6 - 2x5 - 11x4 + 26x3 + 22x2 - 84x - 27 $-\,2^{6}\cdot 19^{5}\cdot 31$ $C_3^2:D_4$ (as 6T13) $[3]$
6.2.6128345025.2 x6 - 2x5 - 11x4 - 31x3 + 22x2 - 8x - 8 $3^{2}\cdot 5^{2}\cdot 11\cdot 19^{5}$ $S_4\times C_2$ (as 6T11) $[3]$
6.2.6814224448.2 x6 - 2x5 + 8x4 - 50x3 + 60x2 + 68x - 103 $2^{6}\cdot 19^{5}\cdot 43$ $S_6$ (as 6T16) $[3]$
6.2.7118784625.1 x6 + 95x2 - 171x - 475 $5^{3}\cdot 19^{5}\cdot 23$ $S_6$ (as 6T16) $[3]$
6.2.8666346500.1 x6 - 3x5 - x4 - 12x3 - 24x2 + 20x + 600 $2^{2}\cdot 5^{3}\cdot 7\cdot 19^{5}$ $S_6$ (as 6T16) $[3]$
6.2.11568334528.1 x6 - 2x5 - 11x4 - 50x3 - 149x2 - 84x + 144 $2^{6}\cdot 19^{5}\cdot 73$ $S_6$ (as 6T16) $[3]$
6.2.15213152256.1 x6 - 19x4 - 76x3 - 152x2 - 152x - 76 $2^{11}\cdot 3\cdot 19^{5}$ $C_3^2:D_4$ (as 6T13) $[6]$
6.2.16478438845.1 x6 - 3x5 - x4 - 12x3 + 90x2 - 531x - 844 $5\cdot 11^{3}\cdot 19^{5}$ $C_3^2:D_4$ (as 6T13) $[3]$
6.0.18385035075.2 x6 - 2x5 + 27x4 + 64x3 + 193x2 + 885x + 1455 $-\,3^{3}\cdot 5^{2}\cdot 11\cdot 19^{5}$ $S_4\times C_2$ (as 6T11) $[2, 6]$
6.2.18451889748.1 x6 - x5 + 2x4 + 27x3 + 94x2 + 52x - 88 $2^{2}\cdot 3^{4}\cdot 19^{5}\cdot 23$ $S_6$ (as 6T16) $[3]$
6.6.19174910656.1 x6 - 19x4 + 76x2 - 76 $2^{6}\cdot 11^{2}\cdot 19^{5}$ $D_{6}$ (as 6T3) $[3]$
6.2.19174910656.4 x6 + 19x4 - 361x2 - 171 $2^{6}\cdot 11^{2}\cdot 19^{5}$ $S_4\times C_2$ (as 6T11) $[12]$
6.0.20284203008.1 x6 + 19x4 + 95x2 - 304x + 285 $-\,2^{13}\cdot 19^{5}$ $\PGL(2,5)$ (as 6T14) $[6]$
6.2.20858657976.1 x6 - x5 - 17x4 + 27x3 - 39x2 + 90x - 126 $2^{3}\cdot 3^{4}\cdot 13\cdot 19^{5}$ $S_6$ (as 6T16) $[6]$
6.2.23780454796.1 x6 + 19x4 - 57x2 - 475 $2^{2}\cdot 7^{4}\cdot 19^{5}$ $A_4\times C_2$ (as 6T6) $[3]$
6.4.25355253760.1 x6 - 2x5 - 30x4 + 64x3 - 35x2 - 46x + 30 $-\,2^{11}\cdot 5\cdot 19^{5}$ $C_3^2:D_4$ (as 6T13) $[3]$
6.2.30641725125.1 x6 - 3x5 + 18x4 - 31x3 + 33x2 - 18x - 1319 $3^{2}\cdot 5^{3}\cdot 11\cdot 19^{5}$ $S_4\times C_2$ (as 6T11) $[12]$
6.2.31060185856.1 x6 - 38x2 - 76x - 76 $2^{8}\cdot 7^{2}\cdot 19^{5}$ $S_6$ (as 6T16) $[3]$
6.2.35655825600.1 x6 + 19x4 + 95x2 - 475 $2^{6}\cdot 3^{2}\cdot 5^{2}\cdot 19^{5}$ $S_4\times C_2$ (as 6T11) $[3]$
6.2.35655825600.2 x6 - 19x4 + 114x2 - 171 $2^{6}\cdot 3^{2}\cdot 5^{2}\cdot 19^{5}$ $D_{6}$ (as 6T3) $[3]$
6.6.41615795893.1 x6 - x5 - 55x4 + 160x3 - 20x2 - 176x + 64 $7^{5}\cdot 19^{5}$ $C_6$ (as 6T1) $[3]$
6.2.45797927104.1 x6 + 19x4 - 38x3 + 19x2 + 114x - 171 $2^{6}\cdot 17^{2}\cdot 19^{5}$ $S_6$ (as 6T16) $[3]$
6.2.46590278784.1 x6 - 2x5 + 8x4 - 12x3 + 212x2 + 676x + 201 $2^{7}\cdot 3\cdot 7^{2}\cdot 19^{5}$ $S_6$ (as 6T16) $[3]$
6.4.47541100800.1 x6 - 2x5 - 11x4 - 12x3 + 41x2 + 30x - 27 $-\,2^{8}\cdot 3\cdot 5^{2}\cdot 19^{5}$ $C_3^2:D_4$ (as 6T13) $[3]$
6.4.47560909592.1 x6 - 19x4 - 190x2 + 608 $-\,2^{3}\cdot 7^{4}\cdot 19^{5}$ $A_4\times C_2$ (as 6T6) $[3]$
6.2.51344388864.4 x6 - 2x5 + 8x4 + 26x3 + 174x2 + 144x + 30 $2^{8}\cdot 3^{4}\cdot 19^{5}$ $S_3^2$ (as 6T9) $[3]$
6.2.51344388864.5 x6 - 2x5 - 30x4 + 64x3 + 250x2 - 654x + 201 $2^{8}\cdot 3^{4}\cdot 19^{5}$ $S_6$ (as 6T16) $[6]$
6.2.51978270208.1 x6 - 2x5 + 8x4 - 50x3 - 149x2 + 220x + 486 $2^{9}\cdot 19^{5}\cdot 41$ $S_6$ (as 6T16) $[3]$
6.6.52731004304.1 x6 - 2x5 - 30x4 + 64x3 + 155x2 - 198x - 198 $2^{4}\cdot 11^{3}\cdot 19^{5}$ $D_{6}$ (as 6T3) $[3]$
6.2.52731004304.1 x6 - 3x5 + 37x4 - 69x3 + 128x2 - 94x - 8 $2^{4}\cdot 11^{3}\cdot 19^{5}$ $S_4\times C_2$ (as 6T11) $[12]$
6.0.53562973568.1 x6 - 19x4 + 171x2 - 304x + 247 $-\,2^{7}\cdot 13^{2}\cdot 19^{5}$ $S_6$ (as 6T16) $[6]$
6.2.54355325248.1 x6 - 3x5 - 20x4 + 45x3 - 62x2 + 39x - 27 $2^{6}\cdot 7^{3}\cdot 19^{5}$ $D_{6}$ (as 6T3) $[12]$
6.2.54355325248.4 x6 - x5 + 2x4 + 65x3 - 267x2 + 546x - 202 $2^{6}\cdot 7^{3}\cdot 19^{5}$ $S_4\times C_2$ (as 6T11) $[2, 6]$
6.2.54355325248.5 x6 - x5 - 17x4 + 8x3 + 56x2 + 128x + 64 $2^{6}\cdot 7^{3}\cdot 19^{5}$ $S_3^2$ (as 6T9) $[3]$
6.2.54355325248.6 x6 - 2x5 + 8x4 - 88x3 + 60x2 - 388x + 1284 $2^{6}\cdot 7^{3}\cdot 19^{5}$ $\PGL(2,5)$ (as 6T14) $[3]$
6.0.54513795584.1 x6 + 19x4 - 38x3 + 190x2 - 228x + 190 $-\,2^{9}\cdot 19^{5}\cdot 43$ $S_6$ (as 6T16) $[6]$
6.0.58497838875.1 x6 - 2x5 + 8x4 - 69x3 + 288x2 - 312x + 201 $-\,3^{3}\cdot 5^{3}\cdot 7\cdot 19^{5}$ $S_4\times C_2$ (as 6T11) $[2, 6]$
6.4.59426376000.1 x6 - 2x5 - 30x4 + 140x3 - 320x2 + 144x - 8 $-\,2^{6}\cdot 3\cdot 5^{3}\cdot 19^{5}$ $C_3^2:D_4$ (as 6T13) $[3]$
6.0.62120371712.1 x6 - 38x4 + 361x2 + 1368 $-\,2^{9}\cdot 7^{2}\cdot 19^{5}$ $D_{6}$ (as 6T3) $[6, 12]$
6.0.62120371712.2 x6 - 209x2 - 228x + 2052 $-\,2^{9}\cdot 7^{2}\cdot 19^{5}$ $S_4\times C_2$ (as 6T11) $[2, 2, 6]$
6.2.63388134400.1 x6 - 2x5 + 27x4 - 88x3 + 60x2 - 3200x - 7418 $2^{10}\cdot 5^{2}\cdot 19^{5}$ $D_{6}$ (as 6T3) $[3]$
6.2.63388134400.4 x6 - 19x4 + 285x2 - 475 $2^{10}\cdot 5^{2}\cdot 19^{5}$ $S_4\times C_2$ (as 6T11) $[3]$
6.2.67944156560.1 x6 - 2x5 + 8x4 + 64x3 - 92x2 - 616x - 768 $2^{4}\cdot 5\cdot 7^{3}\cdot 19^{5}$ $S_6$ (as 6T16) $[6]$
6.4.68459185152.1 x6 - 38x4 + 57x2 - 304x - 76 $-\,2^{10}\cdot 3^{3}\cdot 19^{5}$ $C_3^2:D_4$ (as 6T13) $[6]$
6.2.80225607600.1 x6 - 76x3 - 57x2 + 570x + 190 $2^{4}\cdot 3^{4}\cdot 5^{2}\cdot 19^{5}$ $S_6$ (as 6T16) $[6]$
6.2.83434631904.1 x6 - x5 + 2x4 + 27x3 + 37x2 + 52x + 26 $2^{5}\cdot 3^{4}\cdot 13\cdot 19^{5}$ $S_6$ (as 6T16) $[3]$
Next   To download results, determine the number of results.