Learn more

Refine search


Results (1-50 of at least 1000)

Next   To download results, determine the number of results.
Label Polynomial Discriminant Galois group Class group Regulator
9.5.16607195993.1 $x^{9} - 2 x^{8} - 3 x^{7} + 4 x^{6} + 11 x^{5} - 14 x^{4} - x^{3} + 7 x^{2} - 5 x + 1$ $19^{6}\cdot 353$ $S_3 \wr C_3 $ (as 9T28) trivial $57.3540745725$
9.3.24087491072.1 $x^{9} - 7 x^{7} - x^{6} + 29 x^{5} + 30 x^{4} - 18 x^{3} - 35 x^{2} - 5 x + 7$ $-\,2^{9}\cdot 19^{6}$ $S_3\times C_3$ (as 9T4) trivial $56.715041346$
9.3.71462693239.1 $x^{9} - x^{8} + 2 x^{7} + 6 x^{6} - 6 x^{5} + x^{4} + 14 x^{3} - 2 x^{2} - 7 x - 1$ $-\,7^{2}\cdot 19^{6}\cdot 31$ $S_3 \wr C_3 $ (as 9T28) trivial $86.0194742737$
9.3.81295282368.1 $x^{9} - x^{8} - 5 x^{7} + 8 x^{6} + 12 x^{5} - 15 x^{4} - 17 x^{3} + 17 x^{2} + 24 x + 7$ $-\,2^{6}\cdot 3^{3}\cdot 19^{6}$ $C_3^2 : S_3 $ (as 9T13) trivial $114.39529191$
9.3.158779848375.1 $x^{9} - 2 x^{8} - x^{7} - 6 x^{6} - 6 x^{5} + 20 x^{4} - x^{3} - 6 x^{2} + 16 x - 8$ $-\,3^{3}\cdot 5^{3}\cdot 19^{6}$ $S_3\times C_3$ (as 9T4) trivial $190.03256306$
9.1.171482236245.1 $x^{9} - 4 x^{8} + 10 x^{7} - 15 x^{6} + 13 x^{5} - 22 x^{4} - 19 x^{2} - 8 x - 20$ $3^{6}\cdot 5\cdot 19^{6}$ $S_3\wr S_3$ (as 9T31) $[3]$ $130.132436916$
9.3.182302788875.1 $x^{9} - 2 x^{8} + 5 x^{7} - 5 x^{6} + 16 x^{4} - 12 x^{3} + 6 x^{2} - 9 x + 1$ $-\,5^{3}\cdot 19^{6}\cdot 31$ $S_3 \wr C_3 $ (as 9T28) trivial $108.394191249$
9.1.243885847104.1 $x^{9} - 2 x^{8} + 8 x^{7} - 9 x^{6} + 18 x^{5} - 6 x^{4} + 3 x^{3} + 10 x^{2} - 6 x + 1$ $2^{6}\cdot 3^{4}\cdot 19^{6}$ $C_3^2 : C_6$ (as 9T11) $[3]$ $154.062206808$
9.7.264962401792.1 $x^{9} - 2 x^{8} - 4 x^{7} + 7 x^{6} + x^{5} + x^{4} + x^{3} - 8 x^{2} + x + 1$ $-\,2^{9}\cdot 11\cdot 19^{6}$ $S_3 \wr C_3 $ (as 9T28) trivial $395.731027672$
9.5.278935028449.1 $x^{9} - 2 x^{8} - 3 x^{7} + 5 x^{6} - 3 x^{5} + 11 x^{4} - 7 x^{3} - 18 x^{2} + 12 x + 11$ $7^{2}\cdot 11^{2}\cdot 19^{6}$ $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$ (as 9T25) trivial $348.58054135$
9.9.376367048000.1 $x^{9} - 4 x^{8} - 7 x^{7} + 45 x^{6} - 15 x^{5} - 132 x^{4} + 120 x^{3} + 99 x^{2} - 121 x + 7$ $2^{6}\cdot 5^{3}\cdot 19^{6}$ $S_3\times C_3$ (as 9T4) trivial $653.846068459$
9.1.476339545125.1 $x^{9} - 10 x^{6} + 27 x^{3} + 27$ $3^{4}\cdot 5^{3}\cdot 19^{6}$ $S_3^2$ (as 9T8) $[3]$ $185.219829496$
9.3.569066976576.1 $x^{9} - 3 x^{8} + x^{7} + 11 x^{6} - 23 x^{5} + 15 x^{4} + 12 x^{3} - 22 x^{2} + 9 x + 7$ $-\,2^{6}\cdot 3^{3}\cdot 7\cdot 19^{6}$ $S_3 \wr C_3 $ (as 9T28) trivial $360.164354618$
9.1.650362258944.1 $x^{9} - 6 x^{6} - 7 x^{3} - 8$ $2^{9}\cdot 3^{3}\cdot 19^{6}$ $S_3^2$ (as 9T8) $[3]$ $324.728402191$
9.1.975543388416.1 $x^{9} - x^{8} + 4 x^{7} + 5 x^{6} + 6 x^{5} + 17 x^{4} - 9 x^{3} - 20 x^{2} + 12 x + 12$ $2^{8}\cdot 3^{4}\cdot 19^{6}$ $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) $[3]$ $490.961379494$
9.5.1032751179712.1 $x^{9} - 4 x^{8} + 23 x^{6} - 37 x^{5} + 15 x^{4} + x^{3} - 10 x^{2} + 11 x + 1$ $2^{6}\cdot 7^{3}\cdot 19^{6}$ $S_3 \wr C_3 $ (as 9T28) trivial $824.435914341$
9.1.1036514850192.1 $x^{9} - 4 x^{7} - 10 x^{6} - x^{5} + 14 x^{4} + 38 x^{3} + 54 x^{2} + 59 x + 8$ $2^{4}\cdot 3^{4}\cdot 17\cdot 19^{6}$ $S_3\wr S_3$ (as 9T31) $[3]$ $457.824571516$
9.3.1180287062528.1 $x^{9} - x^{8} - 2 x^{7} - x^{6} + 3 x^{5} + x^{4} - x^{3} + 8 x^{2} - 8 x - 7$ $-\,2^{9}\cdot 7^{2}\cdot 19^{6}$ $S_3 \wr C_3 $ (as 9T28) trivial $572.550634428$
9.3.1220699474307.1 $x^{9} - 2 x^{8} - 7 x^{7} + x^{6} + 14 x^{5} + 18 x^{4} + 26 x^{3} + 24 x^{2} + 6 x + 7$ $-\,3^{3}\cdot 19^{6}\cdot 31^{2}$ $S_3 \wr C_3 $ (as 9T28) trivial $449.840819072$
9.1.1234672100964.1 $x^{9} - x^{6} + 13 x^{3} - 12$ $2^{2}\cdot 3^{8}\cdot 19^{6}$ $(C_3^3:C_3):C_2$ (as 9T21) $[3]$ $185.141538621$
9.3.1401543840871.1 $x^{9} + 13 x^{7} - 2 x^{6} + 50 x^{5} + 8 x^{4} - 146 x^{3} + 49 x^{2} - 294 x - 343$ $-\,19^{6}\cdot 31^{3}$ $S_3\times C_3$ (as 9T4) trivial $419.248295936$
9.3.1401543840871.2 $x^{9} - x^{8} - 2 x^{7} - 9 x^{6} + 2 x^{5} + 2 x^{4} + x^{3} - 20 x^{2} - 12 x + 7$ $-\,19^{6}\cdot 31^{3}$ $S_3 \wr C_3 $ (as 9T28) trivial $517.368413395$
9.1.2194972623936.2 $x^{9} - 3 x^{8} + 7 x^{7} - 4 x^{6} + 12 x^{5} - 6 x^{4} + 3 x^{3} + 9 x^{2} + 9 x + 18$ $2^{6}\cdot 3^{6}\cdot 19^{6}$ $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) $[3]$ $1145.75691096$
9.9.2215343490409.1 $x^{9} - 2 x^{8} - 12 x^{7} + 24 x^{6} + 24 x^{5} - 70 x^{4} + 32 x^{3} + 8 x^{2} - 7 x + 1$ $7^{2}\cdot 19^{6}\cdot 31^{2}$ $C_3 \wr C_3 $ (as 9T17) trivial $2001.89818368$
9.1.2778012227169.2 $x^{9} - 10 x^{6} + 46 x^{3} + 27$ $3^{10}\cdot 19^{6}$ $C_3^2 : C_6$ (as 9T11) $[3]$ $768.851190328$
9.3.3010936384000.1 $x^{9} - 3 x^{8} + 10 x^{7} - 12 x^{6} + 11 x^{5} + 7 x^{4} - 37 x^{3} + 7 x^{2} + 7 x + 1$ $-\,2^{9}\cdot 5^{3}\cdot 19^{6}$ $S_3\times C_3$ (as 9T4) trivial $313.900302618$
9.9.3155884743361.1 $x^{9} - 2 x^{8} - 16 x^{7} - 2 x^{6} + 50 x^{5} + 36 x^{4} - 30 x^{3} - 36 x^{2} - 11 x - 1$ $7^{2}\cdot 19^{6}\cdot 37^{2}$ $C_3 \wr C_3 $ (as 9T17) trivial $2075.02819722$
9.9.4007556327104.1 $x^{9} - 19 x^{7} - 13 x^{6} + 76 x^{5} + 76 x^{4} - 64 x^{3} - 76 x^{2} + 8$ $2^{6}\cdot 11^{3}\cdot 19^{6}$ $S_3\times C_3$ (as 9T4) trivial $2558.45118544$
9.1.4149870117129.1 $x^{9} - 3 x^{8} + x^{7} - x^{6} - 18 x^{5} + 76 x^{4} - x^{3} - 138 x^{2} + 64 x - 8$ $3^{6}\cdot 11^{2}\cdot 19^{6}$ $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) $[3]$ $447.986291616$
9.3.4630020378615.1 $x^{9} - 9 x^{7} - 2 x^{6} + 27 x^{5} + 12 x^{4} - 13 x^{3} - 18 x^{2} - 42 x - 1$ $-\,3^{9}\cdot 5\cdot 19^{6}$ $S_3\wr S_3$ (as 9T31) $[3]$ $727.133690024$
9.1.4938688403856.1 $x^{9} - 4 x^{8} + 13 x^{7} - 30 x^{6} + 24 x^{5} + 15 x^{4} - 27 x^{3} + 27 x^{2} - 45 x + 27$ $2^{4}\cdot 3^{8}\cdot 19^{6}$ $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) $[3]$ $614.491589389$
9.1.4938688403856.3 $x^{9} - x^{8} - x^{7} + 9 x^{6} - x^{5} - 2 x^{4} + 68 x^{3} - 43 x^{2} + 66 x + 45$ $2^{4}\cdot 3^{8}\cdot 19^{6}$ $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) $[3]$ $790.081026375$
9.9.5534900853769.1 $x^{9} - 26 x^{7} - 14 x^{6} + 181 x^{5} + 154 x^{4} - 295 x^{3} - 224 x^{2} + 84 x + 56$ $7^{6}\cdot 19^{6}$ $C_3^2$ (as 9T2) trivial $3257.67673381$
9.1.6097146177600.1 $x^{9} - 3 x^{8} - 2 x^{7} + 11 x^{6} + 12 x^{5} - 13 x^{4} - 29 x^{3} + 40 x - 18$ $2^{6}\cdot 3^{4}\cdot 5^{2}\cdot 19^{6}$ $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) $[3]$ $1559.07164084$
9.3.6240683160531.1 $x^{9} - 2 x^{8} - 7 x^{7} - x^{6} + 4 x^{5} + 24 x^{4} + 208 x^{3} + 16 x^{2} + 381 x - 103$ $-\,3^{3}\cdot 17^{3}\cdot 19^{6}$ $S_3\times C_3$ (as 9T4) trivial $856.582672097$
9.5.6296479575397.1 $x^{9} - x^{8} - 3 x^{7} + 13 x^{6} - 21 x^{5} - 20 x^{4} + 17 x^{3} + 3 x^{2} + 91 x - 31$ $11\cdot 19^{6}\cdot 23^{3}$ $S_3 \wr C_3 $ (as 9T28) trivial $1708.39181343$
9.3.6584917871808.2 $x^{9} - x^{8} + 5 x^{7} - 18 x^{6} + 28 x^{5} - 38 x^{4} + 3 x^{3} + 101 x^{2} - 151 x + 58$ $-\,2^{6}\cdot 3^{7}\cdot 19^{6}$ $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T29) $[3]$ $3336.15708196$
9.3.6615027235648.2 $x^{9} - 3 x^{8} + 16 x^{7} - 30 x^{6} + 69 x^{5} - 79 x^{4} + 59 x^{3} - 15 x^{2} - 25 x - 1$ $-\,2^{6}\cdot 13^{3}\cdot 19^{6}$ $C_3^2 : S_3 $ (as 9T13) trivial $741.18348259$
9.1.7408032605784.1 $x^{9} + 3 x^{7} - 4 x^{6} + 3 x^{5} - 27 x^{4} - 19 x^{3} - 42 x^{2} + 18 x - 8$ $2^{3}\cdot 3^{9}\cdot 19^{6}$ $S_3\wr S_3$ (as 9T31) $[3]$ $1816.00907717$
9.1.7716700631025.1 $x^{9} - x^{8} + 9 x^{7} - 9 x^{6} + 30 x^{5} - 54 x^{4} + 5 x^{3} - 116 x^{2} + 60 x + 144$ $3^{8}\cdot 5^{2}\cdot 19^{6}$ $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) $[3]$ $3705.3519823$
9.3.8262009437696.1 $x^{9} - 3 x^{8} + 6 x^{7} - 27 x^{5} - 39 x^{4} - 41 x^{3} - 117 x^{2} - 275 x - 121$ $-\,2^{9}\cdot 7^{3}\cdot 19^{6}$ $S_3\times C_3$ (as 9T4) $[2]$ $1012.66331456$
9.3.8334036681507.1 $x^{9} - 4 x^{7} - 8 x^{6} + 18 x^{5} + 15 x^{4} - 12 x^{3} + 9 x^{2} - 39 x + 12$ $-\,3^{11}\cdot 19^{6}$ $C_3 \wr S_3 $ (as 9T20) $[3]$ $2167.00437232$
9.3.8334036681507.2 $x^{9} - 4 x^{8} + 18 x^{7} - 42 x^{6} + 78 x^{5} - 90 x^{4} + 75 x^{3} - 138 x^{2} + 27$ $-\,3^{11}\cdot 19^{6}$ $C_3 \wr S_3 $ (as 9T20) $[3]$ $1764.05549761$
9.3.8334036681507.3 $x^{9} - 4 x^{8} + 18 x^{7} - 50 x^{6} + 93 x^{5} - 81 x^{4} + 132 x^{3} - 252 x^{2} + 144$ $-\,3^{11}\cdot 19^{6}$ $C_3 \wr S_3 $ (as 9T20) $[3]$ $752.856972402$
9.3.9662235993899.1 $x^{9} - 23 x^{7} - 10 x^{6} + 151 x^{5} + 185 x^{4} - 76 x^{3} - 250 x^{2} - 150 x - 125$ $-\,19^{6}\cdot 59^{3}$ $S_3\times C_3$ (as 9T4) trivial $885.824812943$
9.1.9911673254961.1 $x^{9} - 2 x^{8} + x^{7} - 5 x^{6} + 3 x^{5} + 14 x^{4} - 10 x^{3} + 23 x^{2} - 21 x + 8$ $3^{6}\cdot 17^{2}\cdot 19^{6}$ $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) $[3]$ $2460.807489$
9.3.10161910296000.1 $x^{9} - 3 x^{8} + 4 x^{7} - 5 x^{6} - 20 x^{5} - 29 x^{4} + 21 x^{3} + 28 x^{2} + 30 x + 18$ $-\,2^{6}\cdot 3^{3}\cdot 5^{3}\cdot 19^{6}$ $S_3^2$ (as 9T8) $[3]$ $2111.8821709$
9.3.10288934174700.1 $x^{9} - x^{8} + 3 x^{7} - 7 x^{6} - 11 x^{5} - 3 x^{4} + x^{3} - x^{2} + 102 x + 12$ $-\,2^{2}\cdot 3^{7}\cdot 5^{2}\cdot 19^{6}$ $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T29) $[3]$ $2350.5482695$
9.3.12861167718375.3 $x^{9} - 9 x^{7} - 10 x^{6} + 27 x^{5} + 60 x^{4} - 90 x^{2} - 81 x + 27$ $-\,3^{7}\cdot 5^{3}\cdot 19^{6}$ $C_3 \wr S_3 $ (as 9T20) $[3]$ $1027.28217567$
9.3.12861167718375.4 $x^{9} - 2 x^{8} - 5 x^{7} - 30 x^{6} - 12 x^{5} - 15 x^{4} + 27 x^{3} - 18 x^{2} + 27$ $-\,3^{7}\cdot 5^{3}\cdot 19^{6}$ $C_3 \wr S_3 $ (as 9T20) $[3]$ $1789.4904409$
Next   To download results, determine the number of results.