Learn more

Refine search


Results (1-50 of at least 1000)

Next   To download results, determine the number of results.
Label Polynomial Discriminant Galois group Class group
2.2.181.1 x2 - x - 45 \( 181 \) $C_2$ (as 2T1) trivial
2.0.543.1 x2 - x + 136 \( -\,3\cdot 181 \) $C_2$ (as 2T1) $[12]$
2.0.724.1 x2 + 181 \( -\,2^{2}\cdot 181 \) $C_2$ (as 2T1) $[10]$
2.2.905.1 x2 - x - 226 \( 5\cdot 181 \) $C_2$ (as 2T1) $[4]$
2.0.1991.1 x2 - x + 498 \( -\,11\cdot 181 \) $C_2$ (as 2T1) $[56]$
2.2.2172.1 x2 - 543 \( 2^{2}\cdot 3\cdot 181 \) $C_2$ (as 2T1) $[2]$
2.2.2353.1 x2 - x - 588 \( 13\cdot 181 \) $C_2$ (as 2T1) $[2]$
2.0.2715.1 x2 - x + 679 \( -\,3\cdot 5\cdot 181 \) $C_2$ (as 2T1) $[2, 4]$
2.0.3620.1 x2 + 905 \( -\,2^{2}\cdot 5\cdot 181 \) $C_2$ (as 2T1) $[2, 12]$
2.2.5249.1 x2 - x - 1312 \( 29\cdot 181 \) $C_2$ (as 2T1) $[8]$
2.2.5973.1 x2 - x - 1493 \( 3\cdot 11\cdot 181 \) $C_2$ (as 2T1) $[4]$
2.2.6697.1 x2 - x - 1674 \( 37\cdot 181 \) $C_2$ (as 2T1) $[2]$
2.0.7059.1 x2 - x + 1765 \( -\,3\cdot 13\cdot 181 \) $C_2$ (as 2T1) $[4, 8]$
2.0.7783.1 x2 - x + 1946 \( -\,43\cdot 181 \) $C_2$ (as 2T1) $[44]$
2.2.7964.1 x2 - 1991 \( 2^{2}\cdot 11\cdot 181 \) $C_2$ (as 2T1) $[2]$
2.0.9412.1 x2 + 2353 \( -\,2^{2}\cdot 13\cdot 181 \) $C_2$ (as 2T1) $[2, 8]$
2.0.9955.1 x2 - x + 2489 \( -\,5\cdot 11\cdot 181 \) $C_2$ (as 2T1) $[4, 4]$
2.0.10136.1 x2 + 2534 \( -\,2^{3}\cdot 7\cdot 181 \) $C_2$ (as 2T1) $[2, 30]$
2.2.10136.1 x2 - 2534 \( 2^{3}\cdot 7\cdot 181 \) $C_2$ (as 2T1) $[2]$
2.0.10679.1 x2 - x + 2670 \( -\,59\cdot 181 \) $C_2$ (as 2T1) $[92]$
2.2.10860.1 x2 - 2715 \( 2^{2}\cdot 3\cdot 5\cdot 181 \) $C_2$ (as 2T1) $[2, 2]$
2.2.11765.1 x2 - x - 2941 \( 5\cdot 13\cdot 181 \) $C_2$ (as 2T1) $[2, 2]$
2.0.12127.1 x2 - x + 3032 \( -\,67\cdot 181 \) $C_2$ (as 2T1) $[40]$
2.2.13213.1 x2 - x - 3303 \( 73\cdot 181 \) $C_2$ (as 2T1) $[2]$
2.0.14299.1 x2 - x + 3575 \( -\,79\cdot 181 \) $C_2$ (as 2T1) $[32]$
2.0.15747.1 x2 - x + 3937 \( -\,3\cdot 29\cdot 181 \) $C_2$ (as 2T1) $[2, 12]$
2.2.18281.1 x2 - x - 4570 \( 101\cdot 181 \) $C_2$ (as 2T1) $[2]$
2.0.20091.1 x2 - x + 5023 \( -\,3\cdot 37\cdot 181 \) $C_2$ (as 2T1) $[4, 8]$
2.0.20996.1 x2 + 5249 \( -\,2^{2}\cdot 29\cdot 181 \) $C_2$ (as 2T1) $[2, 60]$
2.0.21539.1 x2 - x + 5385 \( -\,7\cdot 17\cdot 181 \) $C_2$ (as 2T1) $[2, 26]$
2.2.23349.1 x2 - x - 5837 \( 3\cdot 43\cdot 181 \) $C_2$ (as 2T1) $[4]$
2.0.23892.1 x2 + 5973 \( -\,2^{2}\cdot 3\cdot 11\cdot 181 \) $C_2$ (as 2T1) $[2, 2, 8]$
2.2.24073.1 x2 - x - 6018 \( 7\cdot 19\cdot 181 \) $C_2$ (as 2T1) $[22]$
2.0.24616.1 x2 + 6154 \( -\,2^{3}\cdot 17\cdot 181 \) $C_2$ (as 2T1) $[2, 18]$
2.2.24616.1 x2 - 6154 \( 2^{3}\cdot 17\cdot 181 \) $C_2$ (as 2T1) $[2, 2]$
2.2.24797.1 x2 - x - 6199 \( 137\cdot 181 \) $C_2$ (as 2T1) $[4]$
2.0.25159.1 x2 - x + 6290 \( -\,139\cdot 181 \) $C_2$ (as 2T1) $[112]$
2.0.25883.1 x2 - x + 6471 \( -\,11\cdot 13\cdot 181 \) $C_2$ (as 2T1) $[2, 16]$
2.2.26245.1 x2 - x - 6561 \( 5\cdot 29\cdot 181 \) $C_2$ (as 2T1) $[4, 4]$
2.0.26788.1 x2 + 6697 \( -\,2^{2}\cdot 37\cdot 181 \) $C_2$ (as 2T1) $[2, 16]$
2.0.27512.1 x2 + 6878 \( -\,2^{3}\cdot 19\cdot 181 \) $C_2$ (as 2T1) $[2, 30]$
2.2.27512.1 x2 - 6878 \( 2^{3}\cdot 19\cdot 181 \) $C_2$ (as 2T1) $[2]$
2.2.28236.1 x2 - 7059 \( 2^{2}\cdot 3\cdot 13\cdot 181 \) $C_2$ (as 2T1) $[2, 4]$
2.2.29141.1 x2 - x - 7285 \( 7\cdot 23\cdot 181 \) $C_2$ (as 2T1) $[2]$
2.2.29865.1 x2 - x - 7466 \( 3\cdot 5\cdot 11\cdot 181 \) $C_2$ (as 2T1) $[2, 4]$
2.0.30227.1 x2 - x + 7557 \( -\,167\cdot 181 \) $C_2$ (as 2T1) $[40]$
2.0.30408.1 x2 + 7602 \( -\,2^{3}\cdot 3\cdot 7\cdot 181 \) $C_2$ (as 2T1) $[2, 2, 10]$
2.2.30408.1 x2 - 7602 \( 2^{3}\cdot 3\cdot 7\cdot 181 \) $C_2$ (as 2T1) $[2, 2]$
2.2.31132.1 x2 - 7783 \( 2^{2}\cdot 43\cdot 181 \) $C_2$ (as 2T1) $[2]$
2.2.32037.1 x2 - x - 8009 \( 3\cdot 59\cdot 181 \) $C_2$ (as 2T1) $[8]$
Next   To download results, determine the number of results.