Learn more

Refine search


Results (1-50 of 429 matches)

Next   displayed columns for results
Label Polynomial Discriminant Galois group Class group Regulator
12.0.17547210909508096.1 x12x11+4x1020x9+25x843x7+122x6101x5+168x478x3+81x219x+13x^{12} - x^{11} + 4 x^{10} - 20 x^{9} + 25 x^{8} - 43 x^{7} + 122 x^{6} - 101 x^{5} + 168 x^{4} - 78 x^{3} + 81 x^{2} - 19 x + 13 2917112^{9}\cdot 17^{11} S32:C4S_3^2:C_4 (as 12T80) [2][2] 2115.493192922115.49319292
12.0.24984212408264457.1 x126x11+25x1070x9+134x8182x7+211x6224x5+189x4110x3+8x2+24x+16x^{12} - 6 x^{11} + 25 x^{10} - 70 x^{9} + 134 x^{8} - 182 x^{7} + 211 x^{6} - 224 x^{5} + 189 x^{4} - 110 x^{3} + 8 x^{2} + 24 x + 16 3617113^{6}\cdot 17^{11} S3×C4S_3 \times C_4 (as 12T11) [10][10] 4214.3601887952584214.360188795258
12.2.70188843638032384.1 x123x1115x10+55x9+19x8147x757x6+181x5+104x438x3100x248x16x^{12} - 3 x^{11} - 15 x^{10} + 55 x^{9} + 19 x^{8} - 147 x^{7} - 57 x^{6} + 181 x^{5} + 104 x^{4} - 38 x^{3} - 100 x^{2} - 48 x - 16 2111711-\,2^{11}\cdot 17^{11} D6C2D_6\wr C_2 (as 12T125) [2][2] 7284.498124947284.49812494
12.0.70188843638032384.1 x125x11+15x1035x9+70x892x7+108x692x5+70x435x3+15x25x+1x^{12} - 5 x^{11} + 15 x^{10} - 35 x^{9} + 70 x^{8} - 92 x^{7} + 108 x^{6} - 92 x^{5} + 70 x^{4} - 35 x^{3} + 15 x^{2} - 5 x + 1 21117112^{11}\cdot 17^{11} S42:C4S_4^2:C_4 (as 12T238) [2][2] 2362.13141952362.1314195
12.2.280755374552129536.1 x123x11+2x10+4x9+2x828x7+28x6+11x515x4+64x3100x2+54x+18x^{12} - 3 x^{11} + 2 x^{10} + 4 x^{9} + 2 x^{8} - 28 x^{7} + 28 x^{6} + 11 x^{5} - 15 x^{4} + 64 x^{3} - 100 x^{2} + 54 x + 18 2131711-\,2^{13}\cdot 17^{11} S42:D4S_4^2:D_4 (as 12T260) [2][2] 23296.960990723296.9609907
12.6.280755374552129536.1 x125x112x10+50x983x875x7+380x6330x5100x4+356x3240x2+80x16x^{12} - 5 x^{11} - 2 x^{10} + 50 x^{9} - 83 x^{8} - 75 x^{7} + 380 x^{6} - 330 x^{5} - 100 x^{4} + 356 x^{3} - 240 x^{2} + 80 x - 16 2131711-\,2^{13}\cdot 17^{11} S32:C4S_3^2:C_4 (as 12T80) [2][2] 69919.149711669919.1497116
12.2.112...144.1 x123x1115x10+21x9+104x8+108x7244x6516x5168x4+744x3+784x248x832x^{12} - 3 x^{11} - 15 x^{10} + 21 x^{9} + 104 x^{8} + 108 x^{7} - 244 x^{6} - 516 x^{5} - 168 x^{4} + 744 x^{3} + 784 x^{2} - 48 x - 832 2151711-\,2^{15}\cdot 17^{11} D6C2D_6\wr C_2 (as 12T125) [2][2] 128617.729182128617.729182
12.2.112...144.2 x12+17x10+119x8+459x6+884x4+136x2544x^{12} + 17 x^{10} + 119 x^{8} + 459 x^{6} + 884 x^{4} + 136 x^{2} - 544 2151711-\,2^{15}\cdot 17^{11} S42:C4S_4^2:C_4 (as 12T238) [2][2] 192984.280825192984.280825
12.2.112...144.3 x1217x8119x6+374x4612x2136x^{12} - 17 x^{8} - 119 x^{6} + 374 x^{4} - 612 x^{2} - 136 2151711-\,2^{15}\cdot 17^{11} S42:D4S_4^2:D_4 (as 12T260) [2][2] 57518.314770557518.3147705
12.2.112...144.4 x12+17x10+102x8+238x6+289x4255x2136x^{12} + 17 x^{10} + 102 x^{8} + 238 x^{6} + 289 x^{4} - 255 x^{2} - 136 2151711-\,2^{15}\cdot 17^{11} D6C2D_6\wr C_2 (as 12T125) [2][2] 57352.853525957352.8535259
12.2.112...144.5 x124x11+13x1022x9+8x8+32x788x6+64x5+32x4176x3+208x2128x+64x^{12} - 4 x^{11} + 13 x^{10} - 22 x^{9} + 8 x^{8} + 32 x^{7} - 88 x^{6} + 64 x^{5} + 32 x^{4} - 176 x^{3} + 208 x^{2} - 128 x + 64 2151711-\,2^{15}\cdot 17^{11} S42:C4S_4^2:C_4 (as 12T238) [2,2][2, 2] 52217.017223352217.0172233
12.0.112...144.1 x125x11+15x1018x9+19x87x7+6x67x5+19x418x3+15x25x+1x^{12} - 5 x^{11} + 15 x^{10} - 18 x^{9} + 19 x^{8} - 7 x^{7} + 6 x^{6} - 7 x^{5} + 19 x^{4} - 18 x^{3} + 15 x^{2} - 5 x + 1 21517112^{15}\cdot 17^{11} D6C2D_6\wr C_2 (as 12T125) [6][6] 7531.869272977531.86927297
12.4.112...144.1 x12+68x6663x4272x2+34x^{12} + 68 x^{6} - 663 x^{4} - 272 x^{2} + 34 21517112^{15}\cdot 17^{11} S42:D4S_4^2:D_4 (as 12T260) [2][2] 96240.614471996240.6144719
12.4.112...144.2 x124x11+13x1022x9+42x82x73x64x5308x46x3234x2162x+81x^{12} - 4 x^{11} + 13 x^{10} - 22 x^{9} + 42 x^{8} - 2 x^{7} - 3 x^{6} - 4 x^{5} - 308 x^{4} - 6 x^{3} - 234 x^{2} - 162 x + 81 21517112^{15}\cdot 17^{11} S42:C4S_4^2:C_4 (as 12T238) [2][2] 37665.087058737665.0870587
12.0.112...144.2 x123x11+2x10+21x932x845x7+351x6584x5+648x4412x3+988x21272x+1208x^{12} - 3 x^{11} + 2 x^{10} + 21 x^{9} - 32 x^{8} - 45 x^{7} + 351 x^{6} - 584 x^{5} + 648 x^{4} - 412 x^{3} + 988 x^{2} - 1272 x + 1208 21517112^{15}\cdot 17^{11} S32:C4S_3^2:C_4 (as 12T80) [2][2] 9164.819840369164.81984036
12.0.403...817.1 x122x11+16x1024x9+111x8101x7+566x6314x5+1256x41635x3+851x22345x+1789x^{12} - 2 x^{11} + 16 x^{10} - 24 x^{9} + 111 x^{8} - 101 x^{7} + 566 x^{6} - 314 x^{5} + 1256 x^{4} - 1635 x^{3} + 851 x^{2} - 2345 x + 1789 7617117^{6}\cdot 17^{11} S3×C4S_3 \times C_4 (as 12T11) [2][2] 7218.6570573748447218.657057374844
12.6.449...576.1 x1234x8+34x6+136x4+136x2544x^{12} - 34 x^{8} + 34 x^{6} + 136 x^{4} + 136 x^{2} - 544 2171711-\,2^{17}\cdot 17^{11} S42:C4S_4^2:C_4 (as 12T238) [2][2] 289099.334914289099.334914
12.2.449...576.1 x12+17x10+85x8+17x6986x42686x22176x^{12} + 17 x^{10} + 85 x^{8} + 17 x^{6} - 986 x^{4} - 2686 x^{2} - 2176 2171711-\,2^{17}\cdot 17^{11} S42:C4S_4^2:C_4 (as 12T238) [2][2] 173507.065365173507.065365
12.6.449...576.2 x1217x10+68x834x6+374x4136x^{12} - 17 x^{10} + 68 x^{8} - 34 x^{6} + 374 x^{4} - 136 2171711-\,2^{17}\cdot 17^{11} S42:C4S_4^2:C_4 (as 12T238) [2][2] 289137.665015289137.665015
12.2.449...576.2 x12+17x8+238x668x42040x22176x^{12} + 17 x^{8} + 238 x^{6} - 68 x^{4} - 2040 x^{2} - 2176 2171711-\,2^{17}\cdot 17^{11} S32:C4S_3^2:C_4 (as 12T80) [2][2] 416597.997169416597.997169
12.6.449...576.3 x1217x10+85x8119x6102x4+340x2136x^{12} - 17 x^{10} + 85 x^{8} - 119 x^{6} - 102 x^{4} + 340 x^{2} - 136 2171711-\,2^{17}\cdot 17^{11} S42:C4S_4^2:C_4 (as 12T238) [2][2] 426965.637378426965.637378
12.2.449...576.3 x12+17x10+102x8+153x6476x41496x2544x^{12} + 17 x^{10} + 102 x^{8} + 153 x^{6} - 476 x^{4} - 1496 x^{2} - 544 2171711-\,2^{17}\cdot 17^{11} S42:D4S_4^2:D_4 (as 12T260) [2][2] 147713.135061147713.135061
12.6.449...576.4 x1217x10+119x8255x6170x4+612x234x^{12} - 17 x^{10} + 119 x^{8} - 255 x^{6} - 170 x^{4} + 612 x^{2} - 34 2171711-\,2^{17}\cdot 17^{11} S42:C4S_4^2:C_4 (as 12T238) [2][2] 737857.290597737857.290597
12.2.449...576.4 x12+17x10+34x8476x61088x4544x^{12} + 17 x^{10} + 34 x^{8} - 476 x^{6} - 1088 x^{4} - 544 2171711-\,2^{17}\cdot 17^{11} S42:D4S_4^2:D_4 (as 12T260) [2][2] 108621.284464108621.284464
12.2.449...576.5 x12+17x10+102x8+238x6+68x4408x2136x^{12} + 17 x^{10} + 102 x^{8} + 238 x^{6} + 68 x^{4} - 408 x^{2} - 136 2171711-\,2^{17}\cdot 17^{11} S42:C4S_4^2:C_4 (as 12T238) [2][2] 168278.276356168278.276356
12.2.449...576.6 x1217x8+119x6+374x4+612x2136x^{12} - 17 x^{8} + 119 x^{6} + 374 x^{4} + 612 x^{2} - 136 2171711-\,2^{17}\cdot 17^{11} S42:D4S_4^2:D_4 (as 12T260) [2][2] 61007.882104461007.8821044
12.2.449...576.7 x1217x10+119x8442x6+833x4476x234x^{12} - 17 x^{10} + 119 x^{8} - 442 x^{6} + 833 x^{4} - 476 x^{2} - 34 2171711-\,2^{17}\cdot 17^{11} S42:D4S_4^2:D_4 (as 12T260) [2][2] 161649.858539161649.858539
12.2.449...576.8 x12+17x885x6+51x4+34x234x^{12} + 17 x^{8} - 85 x^{6} + 51 x^{4} + 34 x^{2} - 34 2171711-\,2^{17}\cdot 17^{11} S42:D4S_4^2:D_4 (as 12T260) [2][2] 126690.654584126690.654584
12.2.449...576.9 x1234x934x834x7+187x6+170x5119x4986x31071x2272x+544x^{12} - 34 x^{9} - 34 x^{8} - 34 x^{7} + 187 x^{6} + 170 x^{5} - 119 x^{4} - 986 x^{3} - 1071 x^{2} - 272 x + 544 2171711-\,2^{17}\cdot 17^{11} S42:D4S_4^2:D_4 (as 12T260) [2][2] 112558.113937112558.113937
12.2.449...576.10 x12x11+4x1020x99x8+25x714x6322x5+304x41200x3+880x2920x+608x^{12} - x^{11} + 4 x^{10} - 20 x^{9} - 9 x^{8} + 25 x^{7} - 14 x^{6} - 322 x^{5} + 304 x^{4} - 1200 x^{3} + 880 x^{2} - 920 x + 608 2171711-\,2^{17}\cdot 17^{11} S42:D4S_4^2:D_4 (as 12T260) [2][2] 128565.789094128565.789094
12.8.449...576.1 x122x1118x10+78x9127x8+86x7+158x6450x5+168x4+184x350x216x+4x^{12} - 2 x^{11} - 18 x^{10} + 78 x^{9} - 127 x^{8} + 86 x^{7} + 158 x^{6} - 450 x^{5} + 168 x^{4} + 184 x^{3} - 50 x^{2} - 16 x + 4 21717112^{17}\cdot 17^{11} D6C2D_6\wr C_2 (as 12T125) [2][2] 678751.076549678751.076549
12.4.449...576.1 x124x114x10+12x9+59x8172x720x6+540x5189x41400x3+1432x2+688x1007x^{12} - 4 x^{11} - 4 x^{10} + 12 x^{9} + 59 x^{8} - 172 x^{7} - 20 x^{6} + 540 x^{5} - 189 x^{4} - 1400 x^{3} + 1432 x^{2} + 688 x - 1007 21717112^{17}\cdot 17^{11} S42:D4S_4^2:D_4 (as 12T260) [2][2] 101687.346638101687.346638
12.0.449...576.1 x12x11+4x103x9+59x8+8x7+207x6+103x5+406x4+143x3+489x270x+98x^{12} - x^{11} + 4 x^{10} - 3 x^{9} + 59 x^{8} + 8 x^{7} + 207 x^{6} + 103 x^{5} + 406 x^{4} + 143 x^{3} + 489 x^{2} - 70 x + 98 21717112^{17}\cdot 17^{11} S42:D4S_4^2:D_4 (as 12T260) [2,2][2, 2] 16124.032278616124.0322786
12.0.449...576.2 x12+17x8+51x634x434x2+136x^{12} + 17 x^{8} + 51 x^{6} - 34 x^{4} - 34 x^{2} + 136 21717112^{17}\cdot 17^{11} S42:C4S_4^2:C_4 (as 12T238) [2][2] 21067.993534421067.9935344
12.4.449...576.2 x123x11+2x1013x9+36x845x7+79x6142x5+70x44x3+206x2150x50x^{12} - 3 x^{11} + 2 x^{10} - 13 x^{9} + 36 x^{8} - 45 x^{7} + 79 x^{6} - 142 x^{5} + 70 x^{4} - 4 x^{3} + 206 x^{2} - 150 x - 50 21717112^{17}\cdot 17^{11} S42:D4S_4^2:D_4 (as 12T260) [2][2] 65986.616780465986.6167804
12.4.449...576.3 x123x11+2x1013x9+19x8+40x7108x640x5+240x4+64x332x248x16x^{12} - 3 x^{11} + 2 x^{10} - 13 x^{9} + 19 x^{8} + 40 x^{7} - 108 x^{6} - 40 x^{5} + 240 x^{4} + 64 x^{3} - 32 x^{2} - 48 x - 16 21717112^{17}\cdot 17^{11} S42:D4S_4^2:D_4 (as 12T260) [2][2] 187300.206044187300.206044
12.0.449...576.3 x12+17x10+119x8+459x6+952x4+1020x2+136x^{12} + 17 x^{10} + 119 x^{8} + 459 x^{6} + 952 x^{4} + 1020 x^{2} + 136 21717112^{17}\cdot 17^{11} S42:C4S_4^2:C_4 (as 12T238) [2][2] 28881.221046428881.2210464
12.4.449...576.4 x124x11+13x1022x99x836x7+116x6174x5+134x4176x3+106x2+8x4x^{12} - 4 x^{11} + 13 x^{10} - 22 x^{9} - 9 x^{8} - 36 x^{7} + 116 x^{6} - 174 x^{5} + 134 x^{4} - 176 x^{3} + 106 x^{2} + 8 x - 4 21717112^{17}\cdot 17^{11} S42:D4S_4^2:D_4 (as 12T260) [2][2] 86961.967197586961.9671975
12.0.449...576.4 x122x11x10+10x9+43x8152x7+294x6348x5+712x4768x3+868x2288x+752x^{12} - 2 x^{11} - x^{10} + 10 x^{9} + 43 x^{8} - 152 x^{7} + 294 x^{6} - 348 x^{5} + 712 x^{4} - 768 x^{3} + 868 x^{2} - 288 x + 752 21717112^{17}\cdot 17^{11} D6C2D_6\wr C_2 (as 12T125) [2][2] 30270.594216830270.5942168
12.4.449...576.5 x1217x10+85x885x6136x4+102x2+34x^{12} - 17 x^{10} + 85 x^{8} - 85 x^{6} - 136 x^{4} + 102 x^{2} + 34 21717112^{17}\cdot 17^{11} S42:D4S_4^2:D_4 (as 12T260) [2][2] 188428.575509188428.575509
12.0.449...576.5 x124x11+13x1022x99x8+66x720x6106x5+253x4176x3+106x2264x+234x^{12} - 4 x^{11} + 13 x^{10} - 22 x^{9} - 9 x^{8} + 66 x^{7} - 20 x^{6} - 106 x^{5} + 253 x^{4} - 176 x^{3} + 106 x^{2} - 264 x + 234 21717112^{17}\cdot 17^{11} S42:C4S_4^2:C_4 (as 12T238) [2,2][2, 2] 22408.428932622408.4289326
12.4.449...576.6 x1217x10+170x8969x6+2788x43162x2+136x^{12} - 17 x^{10} + 170 x^{8} - 969 x^{6} + 2788 x^{4} - 3162 x^{2} + 136 21717112^{17}\cdot 17^{11} S42:C4S_4^2:C_4 (as 12T238) [2][2] 73222.186189873222.1861898
12.4.449...576.7 x1217x10+119x8459x6+952x41020x2+136x^{12} - 17 x^{10} + 119 x^{8} - 459 x^{6} + 952 x^{4} - 1020 x^{2} + 136 21717112^{17}\cdot 17^{11} S42:C4S_4^2:C_4 (as 12T238) [2][2] 71140.57937571140.579375
12.4.449...576.8 x12+34x8136x651x4+272x2+136x^{12} + 34 x^{8} - 136 x^{6} - 51 x^{4} + 272 x^{2} + 136 21717112^{17}\cdot 17^{11} S42:D4S_4^2:D_4 (as 12T260) [2][2] 204871.710251204871.710251
12.4.449...576.9 x1217x10+119x8442x6+935x41088x2+544x^{12} - 17 x^{10} + 119 x^{8} - 442 x^{6} + 935 x^{4} - 1088 x^{2} + 544 21717112^{17}\cdot 17^{11} S42:C4S_4^2:C_4 (as 12T238) [2][2] 71461.296458271461.2964582
12.4.449...576.10 x1217x10+85x8306x6+748x41003x2+544x^{12} - 17 x^{10} + 85 x^{8} - 306 x^{6} + 748 x^{4} - 1003 x^{2} + 544 21717112^{17}\cdot 17^{11} S32:C4S_3^2:C_4 (as 12T80) [2][2] 131794.878234131794.878234
12.4.449...576.11 x12+17x10+51x8221x6408x4+204x2+544x^{12} + 17 x^{10} + 51 x^{8} - 221 x^{6} - 408 x^{4} + 204 x^{2} + 544 21717112^{17}\cdot 17^{11} S42:D4S_4^2:D_4 (as 12T260) [2][2] 126704.356288126704.356288
12.0.133...625.1 x126x11+25x1070x9+151x8250x7+347x6394x5+393x4314x3+212x295x+33x^{12} - 6 x^{11} + 25 x^{10} - 70 x^{9} + 151 x^{8} - 250 x^{7} + 347 x^{6} - 394 x^{5} + 393 x^{4} - 314 x^{3} + 212 x^{2} - 95 x + 33 5817115^{8}\cdot 17^{11} A5:C4A_5:C_4 (as 12T124) [4][4] 27801.442145789327801.4421457893
12.6.179...304.1 x126x119x10+66x9+100x8250x7520x6+218x5+733x4620x32015x21472x358x^{12} - 6 x^{11} - 9 x^{10} + 66 x^{9} + 100 x^{8} - 250 x^{7} - 520 x^{6} + 218 x^{5} + 733 x^{4} - 620 x^{3} - 2015 x^{2} - 1472 x - 358 2191711-\,2^{19}\cdot 17^{11} S42:C4S_4^2:C_4 (as 12T238) [2][2] 389304.384241389304.384241
12.2.179...304.1 x1234x8153x6561x41071x22176x^{12} - 34 x^{8} - 153 x^{6} - 561 x^{4} - 1071 x^{2} - 2176 2191711-\,2^{19}\cdot 17^{11} S42:D4S_4^2:D_4 (as 12T260) [2][2] 111433.616757111433.616757
Next   displayed columns for results