Label |
Polynomial |
Degree |
Signature |
Discriminant |
Ram. prime count |
Root discriminant |
Galois root discriminant |
CM field |
Galois |
Monogenic |
Galois group |
Class group |
Unit group torsion |
Unit group rank |
Regulator |
12.0.17547210909508096.1 |
$x^{12} - x^{11} + 4 x^{10} - 20 x^{9} + 25 x^{8} - 43 x^{7} + 122 x^{6} - 101 x^{5} + 168 x^{4} - 78 x^{3} + 81 x^{2} - 19 x + 13$ |
$12$ |
[0,6] |
$2^{9}\cdot 17^{11}$ |
$2$ |
$22.577924062$ |
$37.971390815226314$ |
|
|
? |
$S_3^2:C_4$ (as 12T80) |
$[2]$ |
$2$ |
$5$ |
$2115.49319292$ |
12.0.24984212408264457.1 |
$x^{12} - 6 x^{11} + 25 x^{10} - 70 x^{9} + 134 x^{8} - 182 x^{7} + 211 x^{6} - 224 x^{5} + 189 x^{4} - 110 x^{3} + 8 x^{2} + 24 x + 16$ |
$12$ |
[0,6] |
$3^{6}\cdot 17^{11}$ |
$2$ |
$23.252633080277057$ |
$23.252633080277057$ |
|
|
|
$S_3 \times C_4$ (as 12T11) |
$[10]$ |
$2$ |
$5$ |
$4214.360188795258$ |
12.2.70188843638032384.1 |
$x^{12} - 3 x^{11} - 15 x^{10} + 55 x^{9} + 19 x^{8} - 147 x^{7} - 57 x^{6} + 181 x^{5} + 104 x^{4} - 38 x^{3} - 100 x^{2} - 48 x - 16$ |
$12$ |
[2,5] |
$-\,2^{11}\cdot 17^{11}$ |
$2$ |
$25.3428628892$ |
$53.69965587306223$ |
|
|
? |
$D_6\wr C_2$ (as 12T125) |
$[2]$ |
$2$ |
$6$ |
$7284.49812494$ |
12.0.70188843638032384.1 |
$x^{12} - 5 x^{11} + 15 x^{10} - 35 x^{9} + 70 x^{8} - 92 x^{7} + 108 x^{6} - 92 x^{5} + 70 x^{4} - 35 x^{3} + 15 x^{2} - 5 x + 1$ |
$12$ |
[0,6] |
$2^{11}\cdot 17^{11}$ |
$2$ |
$25.3428628892$ |
$90.3116962480322$ |
|
|
? |
$S_4^2:C_4$ (as 12T238) |
$[2]$ |
$2$ |
$5$ |
$2362.1314195$ |
12.2.280755374552129536.1 |
$x^{12} - 3 x^{11} + 2 x^{10} + 4 x^{9} + 2 x^{8} - 28 x^{7} + 28 x^{6} + 11 x^{5} - 15 x^{4} + 64 x^{3} - 100 x^{2} + 54 x + 18$ |
$12$ |
[2,5] |
$-\,2^{13}\cdot 17^{11}$ |
$2$ |
$28.4464017887$ |
$107.39931174612445$ |
|
|
? |
$S_4^2:D_4$ (as 12T260) |
$[2]$ |
$2$ |
$6$ |
$23296.9609907$ |
12.6.280755374552129536.1 |
$x^{12} - 5 x^{11} - 2 x^{10} + 50 x^{9} - 83 x^{8} - 75 x^{7} + 380 x^{6} - 330 x^{5} - 100 x^{4} + 356 x^{3} - 240 x^{2} + 80 x - 16$ |
$12$ |
[6,3] |
$-\,2^{13}\cdot 17^{11}$ |
$2$ |
$28.4464017887$ |
$47.84095458188848$ |
|
|
|
$S_3^2:C_4$ (as 12T80) |
$[2]$ |
$2$ |
$8$ |
$69919.1497116$ |
12.2.112...144.1 |
$x^{12} - 3 x^{11} - 15 x^{10} + 21 x^{9} + 104 x^{8} + 108 x^{7} - 244 x^{6} - 516 x^{5} - 168 x^{4} + 744 x^{3} + 784 x^{2} - 48 x - 832$ |
$12$ |
[2,5] |
$-\,2^{15}\cdot 17^{11}$ |
$2$ |
$31.9300064187$ |
$53.69965587306223$ |
|
|
|
$D_6\wr C_2$ (as 12T125) |
$[2]$ |
$2$ |
$6$ |
$128617.729182$ |
12.2.112...144.2 |
$x^{12} + 17 x^{10} + 119 x^{8} + 459 x^{6} + 884 x^{4} + 136 x^{2} - 544$ |
$12$ |
[2,5] |
$-\,2^{15}\cdot 17^{11}$ |
$2$ |
$31.9300064187$ |
$101.37145155686015$ |
|
|
|
$S_4^2:C_4$ (as 12T238) |
$[2]$ |
$2$ |
$6$ |
$192984.280825$ |
12.2.112...144.3 |
$x^{12} - 17 x^{8} - 119 x^{6} + 374 x^{4} - 612 x^{2} - 136$ |
$12$ |
[2,5] |
$-\,2^{15}\cdot 17^{11}$ |
$2$ |
$31.9300064187$ |
$69.63983780733449$ |
|
|
|
$S_4^2:D_4$ (as 12T260) |
$[2]$ |
$2$ |
$6$ |
$57518.3147705$ |
12.2.112...144.4 |
$x^{12} + 17 x^{10} + 102 x^{8} + 238 x^{6} + 289 x^{4} - 255 x^{2} - 136$ |
$12$ |
[2,5] |
$-\,2^{15}\cdot 17^{11}$ |
$2$ |
$31.9300064187$ |
$53.69965587306223$ |
|
|
|
$D_6\wr C_2$ (as 12T125) |
$[2]$ |
$2$ |
$6$ |
$57352.8535259$ |
12.2.112...144.5 |
$x^{12} - 4 x^{11} + 13 x^{10} - 22 x^{9} + 8 x^{8} + 32 x^{7} - 88 x^{6} + 64 x^{5} + 32 x^{4} - 176 x^{3} + 208 x^{2} - 128 x + 64$ |
$12$ |
[2,5] |
$-\,2^{15}\cdot 17^{11}$ |
$2$ |
$31.9300064187$ |
$56.89280357730381$ |
|
|
|
$S_4^2:C_4$ (as 12T238) |
$[2, 2]$ |
$2$ |
$6$ |
$52217.0172233$ |
12.0.112...144.1 |
$x^{12} - 5 x^{11} + 15 x^{10} - 18 x^{9} + 19 x^{8} - 7 x^{7} + 6 x^{6} - 7 x^{5} + 19 x^{4} - 18 x^{3} + 15 x^{2} - 5 x + 1$ |
$12$ |
[0,6] |
$2^{15}\cdot 17^{11}$ |
$2$ |
$31.9300064187$ |
$60.275825724785875$ |
|
|
? |
$D_6\wr C_2$ (as 12T125) |
$[6]$ |
$2$ |
$5$ |
$7531.86927297$ |
12.4.112...144.1 |
$x^{12} + 68 x^{6} - 663 x^{4} - 272 x^{2} + 34$ |
$12$ |
[4,4] |
$2^{15}\cdot 17^{11}$ |
$2$ |
$31.9300064187$ |
$113.78560715460762$ |
|
|
|
$S_4^2:D_4$ (as 12T260) |
$[2]$ |
$2$ |
$7$ |
$96240.6144719$ |
12.0.112...144.2 |
$x^{12} - 3 x^{11} + 2 x^{10} + 21 x^{9} - 32 x^{8} - 45 x^{7} + 351 x^{6} - 584 x^{5} + 648 x^{4} - 412 x^{3} + 988 x^{2} - 1272 x + 1208$ |
$12$ |
[0,6] |
$2^{15}\cdot 17^{11}$ |
$2$ |
$31.9300064187$ |
$37.971390815226314$ |
|
|
|
$S_3^2:C_4$ (as 12T80) |
$[2]$ |
$2$ |
$5$ |
$9164.81984036$ |
12.4.112...144.2 |
$x^{12} - 4 x^{11} + 13 x^{10} - 22 x^{9} + 42 x^{8} - 2 x^{7} - 3 x^{6} - 4 x^{5} - 308 x^{4} - 6 x^{3} - 234 x^{2} - 162 x + 81$ |
$12$ |
[4,4] |
$2^{15}\cdot 17^{11}$ |
$2$ |
$31.9300064187$ |
$69.63983780733449$ |
|
|
? |
$S_4^2:C_4$ (as 12T238) |
$[2]$ |
$2$ |
$7$ |
$37665.0870587$ |
12.0.403...817.1 |
$x^{12} - 2 x^{11} + 16 x^{10} - 24 x^{9} + 111 x^{8} - 101 x^{7} + 566 x^{6} - 314 x^{5} + 1256 x^{4} - 1635 x^{3} + 851 x^{2} - 2345 x + 1789$ |
$12$ |
[0,6] |
$7^{6}\cdot 17^{11}$ |
$2$ |
$35.51898373246793$ |
$35.51898373246793$ |
|
|
? |
$S_3 \times C_4$ (as 12T11) |
$[2]$ |
$2$ |
$5$ |
$7218.657057374844$ |
12.6.449...576.1 |
$x^{12} - 34 x^{8} + 34 x^{6} + 136 x^{4} + 136 x^{2} - 544$ |
$12$ |
[6,3] |
$-\,2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
$80.45857442045158$ |
|
|
|
$S_4^2:C_4$ (as 12T238) |
$[2]$ |
$2$ |
$8$ |
$289099.334914$ |
12.2.449...576.1 |
$x^{12} + 17 x^{10} + 85 x^{8} + 17 x^{6} - 986 x^{4} - 2686 x^{2} - 2176$ |
$12$ |
[2,5] |
$-\,2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
$110.54635179425756$ |
|
|
|
$S_4^2:C_4$ (as 12T238) |
$[2]$ |
$2$ |
$6$ |
$173507.065365$ |
12.6.449...576.2 |
$x^{12} - 17 x^{10} + 68 x^{8} - 34 x^{6} + 374 x^{4} - 136$ |
$12$ |
[6,3] |
$-\,2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
$56.89280357730381$ |
|
|
|
$S_4^2:C_4$ (as 12T238) |
$[2]$ |
$2$ |
$8$ |
$289137.665015$ |
12.2.449...576.2 |
$x^{12} + 17 x^{8} + 238 x^{6} - 68 x^{4} - 2040 x^{2} - 2176$ |
$12$ |
[2,5] |
$-\,2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
$47.84095458188848$ |
|
|
|
$S_3^2:C_4$ (as 12T80) |
$[2]$ |
$2$ |
$6$ |
$416597.997169$ |
12.6.449...576.3 |
$x^{12} - 17 x^{10} + 85 x^{8} - 119 x^{6} - 102 x^{4} + 340 x^{2} - 136$ |
$12$ |
[6,3] |
$-\,2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
$95.68190916377696$ |
|
|
|
$S_4^2:C_4$ (as 12T238) |
$[2]$ |
$2$ |
$8$ |
$426965.637378$ |
12.2.449...576.3 |
$x^{12} + 17 x^{10} + 102 x^{8} + 153 x^{6} - 476 x^{4} - 1496 x^{2} - 544$ |
$12$ |
[2,5] |
$-\,2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
$107.39931174612445$ |
|
|
|
$S_4^2:D_4$ (as 12T260) |
$[2]$ |
$2$ |
$6$ |
$147713.135061$ |
12.6.449...576.4 |
$x^{12} - 17 x^{10} + 119 x^{8} - 255 x^{6} - 170 x^{4} + 612 x^{2} - 34$ |
$12$ |
[6,3] |
$-\,2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
$80.45857442045158$ |
|
|
|
$S_4^2:C_4$ (as 12T238) |
$[2]$ |
$2$ |
$8$ |
$737857.290597$ |
12.2.449...576.4 |
$x^{12} + 17 x^{10} + 34 x^{8} - 476 x^{6} - 1088 x^{4} - 544$ |
$12$ |
[2,5] |
$-\,2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
$69.63983780733449$ |
|
|
|
$S_4^2:D_4$ (as 12T260) |
$[2]$ |
$2$ |
$6$ |
$108621.284464$ |
12.2.449...576.5 |
$x^{12} + 17 x^{10} + 102 x^{8} + 238 x^{6} + 68 x^{4} - 408 x^{2} - 136$ |
$12$ |
[2,5] |
$-\,2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
$113.78560715460762$ |
|
|
|
$S_4^2:C_4$ (as 12T238) |
$[2]$ |
$2$ |
$6$ |
$168278.276356$ |
12.2.449...576.6 |
$x^{12} - 17 x^{8} + 119 x^{6} + 374 x^{4} + 612 x^{2} - 136$ |
$12$ |
[2,5] |
$-\,2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
$69.63983780733449$ |
|
|
? |
$S_4^2:D_4$ (as 12T260) |
$[2]$ |
$2$ |
$6$ |
$61007.8821044$ |
12.2.449...576.7 |
$x^{12} - 17 x^{10} + 119 x^{8} - 442 x^{6} + 833 x^{4} - 476 x^{2} - 34$ |
$12$ |
[2,5] |
$-\,2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
$122.30511559717738$ |
|
|
|
$S_4^2:D_4$ (as 12T260) |
$[2]$ |
$2$ |
$6$ |
$161649.858539$ |
12.2.449...576.8 |
$x^{12} + 17 x^{8} - 85 x^{6} + 51 x^{4} + 34 x^{2} - 34$ |
$12$ |
[2,5] |
$-\,2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
$122.30511559717738$ |
|
|
|
$S_4^2:D_4$ (as 12T260) |
$[2]$ |
$2$ |
$6$ |
$126690.654584$ |
12.2.449...576.9 |
$x^{12} - 34 x^{9} - 34 x^{8} - 34 x^{7} + 187 x^{6} + 170 x^{5} - 119 x^{4} - 986 x^{3} - 1071 x^{2} - 272 x + 544$ |
$12$ |
[2,5] |
$-\,2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
$69.63983780733449$ |
|
|
|
$S_4^2:D_4$ (as 12T260) |
$[2]$ |
$2$ |
$6$ |
$112558.113937$ |
12.2.449...576.10 |
$x^{12} - x^{11} + 4 x^{10} - 20 x^{9} - 9 x^{8} + 25 x^{7} - 14 x^{6} - 322 x^{5} + 304 x^{4} - 1200 x^{3} + 880 x^{2} - 920 x + 608$ |
$12$ |
[2,5] |
$-\,2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
$122.30511559717738$ |
|
|
|
$S_4^2:D_4$ (as 12T260) |
$[2]$ |
$2$ |
$6$ |
$128565.789094$ |
12.0.449...576.1 |
$x^{12} - x^{11} + 4 x^{10} - 3 x^{9} + 59 x^{8} + 8 x^{7} + 207 x^{6} + 103 x^{5} + 406 x^{4} + 143 x^{3} + 489 x^{2} - 70 x + 98$ |
$12$ |
[0,6] |
$2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
$95.68190916377696$ |
|
|
? |
$S_4^2:D_4$ (as 12T260) |
$[2, 2]$ |
$2$ |
$5$ |
$16124.0322786$ |
12.4.449...576.1 |
$x^{12} - 4 x^{11} - 4 x^{10} + 12 x^{9} + 59 x^{8} - 172 x^{7} - 20 x^{6} + 540 x^{5} - 189 x^{4} - 1400 x^{3} + 1432 x^{2} + 688 x - 1007$ |
$12$ |
[4,4] |
$2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
$113.78560715460762$ |
|
|
? |
$S_4^2:D_4$ (as 12T260) |
$[2]$ |
$2$ |
$7$ |
$101687.346638$ |
12.8.449...576.1 |
$x^{12} - 2 x^{11} - 18 x^{10} + 78 x^{9} - 127 x^{8} + 86 x^{7} + 158 x^{6} - 450 x^{5} + 168 x^{4} + 184 x^{3} - 50 x^{2} - 16 x + 4$ |
$12$ |
[8,2] |
$2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
$60.275825724785875$ |
|
|
|
$D_6\wr C_2$ (as 12T125) |
$[2]$ |
$2$ |
$9$ |
$678751.076549$ |
12.0.449...576.2 |
$x^{12} + 17 x^{8} + 51 x^{6} - 34 x^{4} - 34 x^{2} + 136$ |
$12$ |
[0,6] |
$2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
$117.11977994207535$ |
|
|
? |
$S_4^2:C_4$ (as 12T238) |
$[2]$ |
$2$ |
$5$ |
$21067.9935344$ |
12.4.449...576.2 |
$x^{12} - 3 x^{11} + 2 x^{10} - 13 x^{9} + 36 x^{8} - 45 x^{7} + 79 x^{6} - 142 x^{5} + 70 x^{4} - 4 x^{3} + 206 x^{2} - 150 x - 50$ |
$12$ |
[4,4] |
$2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
$85.24289022322928$ |
|
|
|
$S_4^2:D_4$ (as 12T260) |
$[2]$ |
$2$ |
$7$ |
$65986.6167804$ |
12.4.449...576.3 |
$x^{12} - 3 x^{11} + 2 x^{10} - 13 x^{9} + 19 x^{8} + 40 x^{7} - 108 x^{6} - 40 x^{5} + 240 x^{4} + 64 x^{3} - 32 x^{2} - 48 x - 16$ |
$12$ |
[4,4] |
$2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
$85.24289022322928$ |
|
|
|
$S_4^2:D_4$ (as 12T260) |
$[2]$ |
$2$ |
$7$ |
$187300.206044$ |
12.0.449...576.3 |
$x^{12} + 17 x^{10} + 119 x^{8} + 459 x^{6} + 952 x^{4} + 1020 x^{2} + 136$ |
$12$ |
[0,6] |
$2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
$69.63983780733449$ |
|
|
? |
$S_4^2:C_4$ (as 12T238) |
$[2]$ |
$2$ |
$5$ |
$28881.2210464$ |
12.4.449...576.4 |
$x^{12} - 4 x^{11} + 13 x^{10} - 22 x^{9} - 9 x^{8} - 36 x^{7} + 116 x^{6} - 174 x^{5} + 134 x^{4} - 176 x^{3} + 106 x^{2} + 8 x - 4$ |
$12$ |
[4,4] |
$2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
$65.73125404566245$ |
|
|
? |
$S_4^2:D_4$ (as 12T260) |
$[2]$ |
$2$ |
$7$ |
$86961.9671975$ |
12.0.449...576.4 |
$x^{12} - 2 x^{11} - x^{10} + 10 x^{9} + 43 x^{8} - 152 x^{7} + 294 x^{6} - 348 x^{5} + 712 x^{4} - 768 x^{3} + 868 x^{2} - 288 x + 752$ |
$12$ |
[0,6] |
$2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
$60.275825724785875$ |
|
|
|
$D_6\wr C_2$ (as 12T125) |
$[2]$ |
$2$ |
$5$ |
$30270.5942168$ |
12.4.449...576.5 |
$x^{12} - 17 x^{10} + 85 x^{8} - 85 x^{6} - 136 x^{4} + 102 x^{2} + 34$ |
$12$ |
[4,4] |
$2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
$65.73125404566245$ |
|
|
|
$S_4^2:D_4$ (as 12T260) |
$[2]$ |
$2$ |
$7$ |
$188428.575509$ |
12.0.449...576.5 |
$x^{12} - 4 x^{11} + 13 x^{10} - 22 x^{9} - 9 x^{8} + 66 x^{7} - 20 x^{6} - 106 x^{5} + 253 x^{4} - 176 x^{3} + 106 x^{2} - 264 x + 234$ |
$12$ |
[0,6] |
$2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
$69.63983780733449$ |
|
|
? |
$S_4^2:C_4$ (as 12T238) |
$[2, 2]$ |
$2$ |
$5$ |
$22408.4289326$ |
12.4.449...576.6 |
$x^{12} - 17 x^{10} + 170 x^{8} - 969 x^{6} + 2788 x^{4} - 3162 x^{2} + 136$ |
$12$ |
[4,4] |
$2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
|
|
|
? |
$S_4^2:C_4$ (as 12T238) |
$[2]$ |
$2$ |
$7$ |
$73222.1861898$ |
12.4.449...576.7 |
$x^{12} - 17 x^{10} + 119 x^{8} - 459 x^{6} + 952 x^{4} - 1020 x^{2} + 136$ |
$12$ |
[4,4] |
$2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
$69.63983780733449$ |
|
|
? |
$S_4^2:C_4$ (as 12T238) |
$[2]$ |
$2$ |
$7$ |
$71140.579375$ |
12.4.449...576.8 |
$x^{12} + 34 x^{8} - 136 x^{6} - 51 x^{4} + 272 x^{2} + 136$ |
$12$ |
[4,4] |
$2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
$118.8233263691419$ |
|
|
|
$S_4^2:D_4$ (as 12T260) |
$[2]$ |
$2$ |
$7$ |
$204871.710251$ |
12.4.449...576.9 |
$x^{12} - 17 x^{10} + 119 x^{8} - 442 x^{6} + 935 x^{4} - 1088 x^{2} + 544$ |
$12$ |
[4,4] |
$2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
|
|
|
? |
$S_4^2:C_4$ (as 12T238) |
$[2]$ |
$2$ |
$7$ |
$71461.2964582$ |
12.4.449...576.10 |
$x^{12} - 17 x^{10} + 85 x^{8} - 306 x^{6} + 748 x^{4} - 1003 x^{2} + 544$ |
$12$ |
[4,4] |
$2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
$53.69965587306223$ |
|
|
? |
$S_3^2:C_4$ (as 12T80) |
$[2]$ |
$2$ |
$7$ |
$131794.878234$ |
12.4.449...576.11 |
$x^{12} + 17 x^{10} + 51 x^{8} - 221 x^{6} - 408 x^{4} + 204 x^{2} + 544$ |
$12$ |
[4,4] |
$2^{17}\cdot 17^{11}$ |
$2$ |
$35.8402204073$ |
$65.73125404566245$ |
|
|
|
$S_4^2:D_4$ (as 12T260) |
$[2]$ |
$2$ |
$7$ |
$126704.356288$ |
12.0.133...625.1 |
$x^{12} - 6 x^{11} + 25 x^{10} - 70 x^{9} + 151 x^{8} - 250 x^{7} + 347 x^{6} - 394 x^{5} + 393 x^{4} - 314 x^{3} + 212 x^{2} - 95 x + 33$ |
$12$ |
[0,6] |
$5^{8}\cdot 17^{11}$ |
$2$ |
$39.254686577190164$ |
$39.254686577190164$ |
|
|
? |
$A_5:C_4$ (as 12T124) |
$[4]$ |
$2$ |
$5$ |
$27801.4421457893$ |
12.2.179...304.1 |
$x^{12} - 34 x^{8} - 153 x^{6} - 561 x^{4} - 1071 x^{2} - 2176$ |
$12$ |
[2,5] |
$-\,2^{19}\cdot 17^{11}$ |
$2$ |
$40.2292872102$ |
$102.84593327285764$ |
|
|
? |
$S_4^2:D_4$ (as 12T260) |
$[2]$ |
$2$ |
$6$ |
$111433.616757$ |
12.6.179...304.1 |
$x^{12} - 6 x^{11} - 9 x^{10} + 66 x^{9} + 100 x^{8} - 250 x^{7} - 520 x^{6} + 218 x^{5} + 733 x^{4} - 620 x^{3} - 2015 x^{2} - 1472 x - 358$ |
$12$ |
[6,3] |
$-\,2^{19}\cdot 17^{11}$ |
$2$ |
$40.2292872102$ |
$65.73125404566245$ |
|
|
|
$S_4^2:C_4$ (as 12T238) |
$[2]$ |
$2$ |
$8$ |
$389304.384241$ |