Learn more

Note: Search results may be incomplete. Given $p$-adic completions contain an unramified field and completions are only searched for ramified primes.

Refine search


Results (1-50 of 621 matches)

Next   displayed columns for results
Label Polynomial Discriminant Galois group Class group Regulator
12.4.89927497617408.1 $x^{12} - 4 x^{11} + 2 x^{10} + 8 x^{9} - 14 x^{8} - 4 x^{7} + 13 x^{6} + 4 x^{5} - 14 x^{4} - 8 x^{3} + 2 x^{2} + 4 x + 1$ $2^{12}\cdot 3^{6}\cdot 11^{6}\cdot 17$ $C_2\wr S_5$ (as 12T270) trivial $306.790588996$
12.0.888413405777537.1 $x^{12} + 2 x^{10} - 4 x^{9} + 5 x^{8} - 11 x^{7} + 9 x^{6} - 22 x^{5} + 20 x^{4} - 32 x^{3} + 32 x^{2} + 64$ $17\cdot 263^{2}\cdot 27487^{2}$ $C_2^6.S_6$ (as 12T293) trivial $1245.13766384$
12.0.3918802294296089.1 $x^{12} - 3 x^{11} + 7 x^{10} - 12 x^{9} + 17 x^{8} - 22 x^{7} + 29 x^{6} - 44 x^{5} + 68 x^{4} - 96 x^{3} + 112 x^{2} - 96 x + 64$ $17\cdot 97\cdot 1541581^{2}$ $C_2^6.S_6$ (as 12T293) $[2]$ $319.875869528$
12.0.7701639969619937.1 $x^{12} - 5 x^{11} + 9 x^{10} - 5 x^{9} - 17 x^{7} + 45 x^{6} - 34 x^{5} - 40 x^{3} + 144 x^{2} - 160 x + 64$ $11^{2}\cdot 17\cdot 223^{2}\cdot 8677^{2}$ $C_2^6.S_6$ (as 12T293) trivial $2466.0396091$
12.0.8947387418290913.1 $x^{12} - 3 x^{11} + 8 x^{10} - 10 x^{9} + 11 x^{8} + x^{7} - 3 x^{6} + 2 x^{5} + 44 x^{4} - 80 x^{3} + 128 x^{2} - 96 x + 64$ $17\cdot 409\cdot 1134389^{2}$ $C_2^6.S_6$ (as 12T293) $[2]$ $250.087165802$
12.0.15684700599575552.1 $x^{12} - x^{11} + 2 x^{10} - 2 x^{9} + 4 x^{8} - 8 x^{7} + 8 x^{6} - 16 x^{5} + 16 x^{4} - 16 x^{3} + 32 x^{2} - 32 x + 64$ $2^{10}\cdot 17\cdot 949213^{2}$ $C_2^6.S_6$ (as 12T293) $[2]$ $3077.46454264$
12.0.21681465086843513.1 $x^{12} - x^{11} + 2 x^{9} - 4 x^{7} + 15 x^{6} - 8 x^{5} + 16 x^{3} - 32 x + 64$ $7^{2}\cdot 17\cdot 5101781^{2}$ $C_2^6.S_6$ (as 12T293) $[2]$ $600.145420845$
12.0.39762018070863248.1 $x^{12} - x^{11} + 2 x^{10} - x^{9} + 6 x^{8} - 2 x^{7} + 6 x^{6} - 4 x^{5} + 24 x^{4} - 8 x^{3} + 32 x^{2} - 32 x + 64$ $2^{4}\cdot 17\cdot 12090653^{2}$ $C_2^6.S_6$ (as 12T293) $[4]$ $5107.17878817$
12.0.48467912965623808.1 $x^{12} - 4 x^{11} + 11 x^{10} - 20 x^{9} + 30 x^{8} - 36 x^{7} + 49 x^{6} - 72 x^{5} + 120 x^{4} - 160 x^{3} + 176 x^{2} - 128 x + 64$ $2^{12}\cdot 17\cdot 61^{2}\cdot 401\cdot 683^{2}$ $C_2^6.S_6$ (as 12T293) $[2, 2]$ $416.679209079$
12.0.59464617860424425.1 $x^{12} - 2 x^{11} + 3 x^{10} - 8 x^{9} + 13 x^{8} - 19 x^{7} + 33 x^{6} - 38 x^{5} + 52 x^{4} - 64 x^{3} + 48 x^{2} - 64 x + 64$ $5^{2}\cdot 11^{2}\cdot 17\cdot 37^{2}\cdot 29063^{2}$ $C_2^6.S_6$ (as 12T293) trivial $2587.48789122$
12.0.66019350088094812.1 $x^{12} - 3 x^{11} + 8 x^{10} - 13 x^{9} + 19 x^{8} - 23 x^{7} + 30 x^{6} - 46 x^{5} + 76 x^{4} - 104 x^{3} + 128 x^{2} - 96 x + 64$ $2^{2}\cdot 17\cdot 71\cdot 997^{2}\cdot 3709^{2}$ $C_2^6.S_6$ (as 12T293) $[2, 2]$ $808.476099581$
12.0.76508005038733817.1 $x^{12} - 4 x^{11} + 6 x^{10} - 4 x^{9} + 6 x^{8} - 23 x^{7} + 45 x^{6} - 46 x^{5} + 24 x^{4} - 32 x^{3} + 96 x^{2} - 128 x + 64$ $17\cdot 23^{2}\cdot 2916763^{2}$ $C_2^6.S_6$ (as 12T293) trivial $2698.56628764$
12.0.82450955111993344.1 $x^{12} + 4 x^{10} - 4 x^{9} + 9 x^{8} - 16 x^{7} + 19 x^{6} - 32 x^{5} + 36 x^{4} - 32 x^{3} + 64 x^{2} + 64$ $2^{12}\cdot 17\cdot 353\cdot 57917^{2}$ $C_2^6.S_6$ (as 12T293) $[2, 2]$ $641.880368761$
12.0.98813817395281224.1 $x^{12} - 3 x^{11} + 4 x^{10} - x^{9} + x^{8} - 13 x^{7} + 32 x^{6} - 26 x^{5} + 4 x^{4} - 8 x^{3} + 64 x^{2} - 96 x + 64$ $2^{3}\cdot 3^{2}\cdot 17\cdot 8985001^{2}$ $C_2^6.S_6$ (as 12T293) $[2, 2]$ $1357.24221458$
12.0.110428522259302600.1 $x^{12} - 2 x^{11} + 6 x^{10} - 13 x^{9} + 24 x^{8} - 41 x^{7} + 60 x^{6} - 82 x^{5} + 96 x^{4} - 104 x^{3} + 96 x^{2} - 64 x + 64$ $2^{3}\cdot 5^{2}\cdot 17\cdot 5699033^{2}$ $C_2^6.S_6$ (as 12T293) $[2, 2]$ $1116.3692407$
12.0.111710450958925433.1 $x^{12} - 5 x^{11} + 12 x^{10} - 19 x^{9} + 21 x^{8} - 18 x^{7} + 19 x^{6} - 36 x^{5} + 84 x^{4} - 152 x^{3} + 192 x^{2} - 160 x + 64$ $17\cdot 103^{2}\cdot 127^{2}\cdot 6197^{2}$ $C_2^6.S_6$ (as 12T293) trivial $5738.91691812$
12.0.121004254597886208.1 $x^{12} - 2 x^{11} + 3 x^{10} - 6 x^{9} + 8 x^{8} - 12 x^{7} + 20 x^{6} - 24 x^{5} + 32 x^{4} - 48 x^{3} + 48 x^{2} - 64 x + 64$ $2^{8}\cdot 3^{2}\cdot 17\cdot 47^{2}\cdot 37397^{2}$ $C_2^6.S_6$ (as 12T293) trivial $7976.22499748$
12.0.122769009742299392.1 $x^{12} - x^{11} + 3 x^{10} - 6 x^{9} + 8 x^{8} - 16 x^{7} + 20 x^{6} - 32 x^{5} + 32 x^{4} - 48 x^{3} + 48 x^{2} - 32 x + 64$ $2^{8}\cdot 17\cdot 53^{2}\cdot 100213^{2}$ $C_2^6.S_6$ (as 12T293) trivial $6151.95371033$
12.0.127582979174879513.1 $x^{12} - 3 x^{11} + 4 x^{10} - 8 x^{9} + 15 x^{8} - 19 x^{7} + 25 x^{6} - 38 x^{5} + 60 x^{4} - 64 x^{3} + 64 x^{2} - 96 x + 64$ $17\cdot 137^{2}\cdot 367^{2}\cdot 1723^{2}$ $C_2^6.S_6$ (as 12T293) trivial $3624.95461217$
12.0.156501438102278144.1 $x^{12} + 2 x^{10} - 2 x^{9} + x^{8} + 2 x^{7} + 5 x^{6} + 4 x^{5} + 4 x^{4} - 16 x^{3} + 32 x^{2} + 64$ $2^{12}\cdot 17\cdot 97\cdot 152219^{2}$ $C_2^6.S_6$ (as 12T293) $[2, 2]$ $955.592641103$
12.0.166224422683162217.1 $x^{12} - 3 x^{11} + 4 x^{10} - 4 x^{9} - 2 x^{8} + 12 x^{7} - 17 x^{6} + 24 x^{5} - 8 x^{4} - 32 x^{3} + 64 x^{2} - 96 x + 64$ $11^{2}\cdot 17\cdot 29^{2}\cdot 107^{2}\cdot 2897^{2}$ $C_2^6.S_6$ (as 12T293) trivial $5108.94378165$
12.0.169316567466572048.1 $x^{12} - 3 x^{11} + 5 x^{10} - 4 x^{9} - x^{8} + 7 x^{7} - 15 x^{6} + 14 x^{5} - 4 x^{4} - 32 x^{3} + 80 x^{2} - 96 x + 64$ $2^{4}\cdot 17\cdot 53^{2}\cdot 470749^{2}$ $C_2^6.S_6$ (as 12T293) $[7]$ $10342.4360235$
12.0.186988600483830848.1 $x^{12} - 4 x^{11} + 8 x^{10} - 9 x^{9} + 3 x^{8} + 8 x^{7} - 18 x^{6} + 16 x^{5} + 12 x^{4} - 72 x^{3} + 128 x^{2} - 128 x + 64$ $2^{6}\cdot 17\cdot 29^{2}\cdot 43^{2}\cdot 10513^{2}$ $C_2^6.S_6$ (as 12T293) trivial $5423.97759936$
12.0.194178831761378673.1 $x^{12} - x^{11} + 7 x^{9} - 5 x^{8} - 4 x^{7} + 25 x^{6} - 8 x^{5} - 20 x^{4} + 56 x^{3} - 32 x + 64$ $3^{2}\cdot 11^{2}\cdot 17\cdot 211^{2}\cdot 15349^{2}$ $C_2^6.S_6$ (as 12T293) $[2]$ $2289.39666388$
12.0.196951742445115656.1 $x^{12} - 2 x^{11} + x^{10} - x^{9} + x^{8} - 5 x^{7} + 16 x^{6} - 10 x^{5} + 4 x^{4} - 8 x^{3} + 16 x^{2} - 64 x + 64$ $2^{3}\cdot 3^{4}\cdot 17\cdot 853^{2}\cdot 4957^{2}$ $C_2^6.S_6$ (as 12T293) $[2]$ $3645.11013006$
12.0.209937842096996377.1 $x^{12} - x^{11} + 4 x^{10} - x^{9} + 3 x^{8} + 12 x^{7} - 5 x^{6} + 24 x^{5} + 12 x^{4} - 8 x^{3} + 64 x^{2} - 32 x + 64$ $7\cdot 13^{2}\cdot 17\cdot 23\cdot 383^{2}\cdot 1759^{2}$ $C_2^6.S_6$ (as 12T293) $[2, 2]$ $922.078706998$
12.0.225023700300266824.1 $x^{12} - 3 x^{11} + 9 x^{10} - 17 x^{9} + 34 x^{8} - 53 x^{7} + 84 x^{6} - 106 x^{5} + 136 x^{4} - 136 x^{3} + 144 x^{2} - 96 x + 64$ $2^{3}\cdot 11^{2}\cdot 17\cdot 997^{2}\cdot 3709^{2}$ $C_2^6.S_6$ (as 12T293) $[2, 2, 2]$ $808.476099581$
12.0.227157079332396617.1 $x^{12} - 5 x^{11} + 10 x^{10} - 8 x^{9} - 5 x^{8} + 23 x^{7} - 39 x^{6} + 46 x^{5} - 20 x^{4} - 64 x^{3} + 160 x^{2} - 160 x + 64$ $17\cdot 4049^{2}\cdot 28549^{2}$ $C_2^6.S_6$ (as 12T293) trivial $6500.43217706$
12.0.271130280705603513.1 $x^{12} - 2 x^{11} - x^{10} + 10 x^{9} - 11 x^{8} - 11 x^{7} + 41 x^{6} - 22 x^{5} - 44 x^{4} + 80 x^{3} - 16 x^{2} - 64 x + 64$ $3^{2}\cdot 17\cdot 4441^{2}\cdot 9479^{2}$ $C_2^6.S_6$ (as 12T293) trivial $5387.43110494$
12.0.280393682796966800.1 $x^{12} - 4 x^{11} + 7 x^{10} - 7 x^{9} + 7 x^{8} - 17 x^{7} + 33 x^{6} - 34 x^{5} + 28 x^{4} - 56 x^{3} + 112 x^{2} - 128 x + 64$ $2^{4}\cdot 5^{2}\cdot 17\cdot 367^{2}\cdot 17497^{2}$ $C_2^6.S_6$ (as 12T293) $[3]$ $12182.3590047$
12.0.290081451900627728.1 $x^{12} - x^{11} + 4 x^{10} - 5 x^{9} + 10 x^{8} - 8 x^{7} + 22 x^{6} - 16 x^{5} + 40 x^{4} - 40 x^{3} + 64 x^{2} - 32 x + 64$ $2^{4}\cdot 11^{2}\cdot 17\cdot 2968813^{2}$ $C_2^6.S_6$ (as 12T293) $[2, 6]$ $1649.70823903$
12.0.297941627115269513.1 $x^{12} - 4 x^{11} + 10 x^{10} - 21 x^{9} + 38 x^{8} - 60 x^{7} + 87 x^{6} - 120 x^{5} + 152 x^{4} - 168 x^{3} + 160 x^{2} - 128 x + 64$ $17\cdot 31^{2}\cdot 4270507^{2}$ $C_2^6.S_6$ (as 12T293) trivial $4616.75961694$
12.0.298166054415204608.1 $x^{12} - 2 x^{11} + x^{10} + 2 x^{9} - 2 x^{8} - 4 x^{7} + 12 x^{6} - 8 x^{5} - 8 x^{4} + 16 x^{3} + 16 x^{2} - 64 x + 64$ $2^{8}\cdot 17\cdot 1013^{2}\cdot 8171^{2}$ $C_2^6.S_6$ (as 12T293) $[7]$ $16067.6534544$
12.0.363436319594039296.1 $x^{12} - 4 x^{11} + 10 x^{10} - 20 x^{9} + 34 x^{8} - 54 x^{7} + 80 x^{6} - 108 x^{5} + 136 x^{4} - 160 x^{3} + 160 x^{2} - 128 x + 64$ $2^{11}\cdot 11^{2}\cdot 17\cdot 419^{2}\cdot 701^{2}$ $C_2^6.S_6$ (as 12T293) $[6]$ $7236.66079463$
12.8.491691274052201937.1 $x^{12} - 3 x^{11} - 12 x^{10} + 14 x^{9} + 87 x^{8} + 48 x^{7} - 191 x^{6} - 378 x^{5} - 225 x^{4} + 100 x^{3} + 207 x^{2} + 102 x + 17$ $3^{16}\cdot 7^{4}\cdot 17\cdot 23^{4}$ $C_2\wr A_6$ (as 12T286) trivial $57395.91921$
12.0.496049945653678684.1 $x^{12} - x^{11} + 5 x^{10} - 8 x^{9} + 17 x^{8} - 25 x^{7} + 42 x^{6} - 50 x^{5} + 68 x^{4} - 64 x^{3} + 80 x^{2} - 32 x + 64$ $2^{2}\cdot 17\cdot 167\cdot 179^{2}\cdot 36923^{2}$ $C_2^6.S_6$ (as 12T293) $[2, 4]$ $1399.70568714$
12.0.521044374969959337.1 $x^{12} - 4 x^{11} + 6 x^{10} - 6 x^{9} + 10 x^{8} - 19 x^{7} + 29 x^{6} - 38 x^{5} + 40 x^{4} - 48 x^{3} + 96 x^{2} - 128 x + 64$ $3^{2}\cdot 7^{2}\cdot 17\cdot 491^{2}\cdot 16979^{2}$ $C_2^6.S_6$ (as 12T293) $[2]$ $4910.9193246$
12.0.536582264053274768.1 $x^{12} + 3 x^{10} - 2 x^{9} + 5 x^{8} - 10 x^{7} + 10 x^{6} - 20 x^{5} + 20 x^{4} - 16 x^{3} + 48 x^{2} + 64$ $2^{4}\cdot 7^{6}\cdot 17\cdot 129491^{2}$ $C_2^6.S_6$ (as 12T293) $[2, 2]$ $2686.09897713$
12.0.555968935287140625.1 $x^{12} + 2 x^{10} - 2 x^{9} + x^{8} - 9 x^{7} + x^{6} - 18 x^{5} + 4 x^{4} - 16 x^{3} + 32 x^{2} + 64$ $3^{8}\cdot 5^{6}\cdot 17\cdot 53^{2}\cdot 337^{2}$ $C_2^6.S_6$ (as 12T293) $[7]$ $13111.0258366$
12.0.666597240468921753.1 $x^{12} - 3 x^{11} + 4 x^{10} - 6 x^{9} + 13 x^{8} - 23 x^{7} + 33 x^{6} - 46 x^{5} + 52 x^{4} - 48 x^{3} + 64 x^{2} - 96 x + 64$ $3^{4}\cdot 17\cdot 19^{2}\cdot 1158007^{2}$ $C_2^6.S_6$ (as 12T293) $[2]$ $7681.18849606$
12.0.752459724585404657.1 $x^{12} - 3 x^{11} + 7 x^{10} - 14 x^{9} + 22 x^{8} - 32 x^{7} + 47 x^{6} - 64 x^{5} + 88 x^{4} - 112 x^{3} + 112 x^{2} - 96 x + 64$ $17\cdot 877^{2}\cdot 239893^{2}$ $C_2^6.S_6$ (as 12T293) $[3]$ $9768.91258512$
12.0.850312445528713977.1 $x^{12} - 3 x^{11} + 3 x^{10} - 5 x^{9} + 15 x^{8} - 17 x^{7} + 11 x^{6} - 34 x^{5} + 60 x^{4} - 40 x^{3} + 48 x^{2} - 96 x + 64$ $3^{2}\cdot 17\cdot 227^{2}\cdot 328411^{2}$ $C_2^6.S_6$ (as 12T293) $[4]$ $3962.92813869$
12.0.870378592886635324.1 $x^{12} - x^{11} + 2 x^{10} - 3 x^{9} + 9 x^{8} - 9 x^{7} + 10 x^{6} - 18 x^{5} + 36 x^{4} - 24 x^{3} + 32 x^{2} - 32 x + 64$ $2^{2}\cdot 17\cdot 29^{2}\cdot 47\cdot 569053^{2}$ $C_2^6.S_6$ (as 12T293) $[2, 4]$ $1841.30864133$
12.0.870628129786400697.1 $x^{12} - 5 x^{11} + 11 x^{10} - 14 x^{9} + 10 x^{8} + x^{7} - 11 x^{6} + 2 x^{5} + 40 x^{4} - 112 x^{3} + 176 x^{2} - 160 x + 64$ $3^{6}\cdot 17\cdot 163^{2}\cdot 51421^{2}$ $C_2^6.S_6$ (as 12T293) $[2]$ $7310.83610874$
12.0.921625395590693888.1 $x^{12} - x^{11} + x^{10} + 3 x^{9} - 2 x^{8} + 2 x^{7} + 4 x^{6} + 4 x^{5} - 8 x^{4} + 24 x^{3} + 16 x^{2} - 32 x + 64$ $2^{10}\cdot 17\cdot 7276169^{2}$ $C_2^6.S_6$ (as 12T293) $[6]$ $10058.8702124$
12.0.109...337.1 $x^{12} - 2 x^{11} + 6 x^{10} - 11 x^{9} + 21 x^{8} - 34 x^{7} + 53 x^{6} - 68 x^{5} + 84 x^{4} - 88 x^{3} + 96 x^{2} - 64 x + 64$ $3^{2}\cdot 17\cdot 449\cdot 3992011^{2}$ $C_2^6.S_6$ (as 12T293) $[20]$ $1997.90545929$
12.0.117...172.1 $x^{12} - 2 x^{11} + 4 x^{10} - 7 x^{9} + 8 x^{8} - 7 x^{7} + 14 x^{6} - 14 x^{5} + 32 x^{4} - 56 x^{3} + 64 x^{2} - 64 x + 64$ $2^{2}\cdot 17\cdot 31\cdot 1201^{2}\cdot 19697^{2}$ $C_2^6.S_6$ (as 12T293) $[2, 2]$ $3781.75769578$
12.0.124...992.1 $x^{12} - x^{11} - x^{10} - 3 x^{9} + 3 x^{8} + 2 x^{7} + 3 x^{6} + 4 x^{5} + 12 x^{4} - 24 x^{3} - 16 x^{2} - 32 x + 64$ $2^{6}\cdot 3^{2}\cdot 11^{2}\cdot 17\cdot 1025891^{2}$ $C_2^6.S_6$ (as 12T293) $[9]$ $14680.3399132$
12.0.143...616.1 $x^{12} - 2 x^{11} + 4 x^{10} - 5 x^{9} + 9 x^{8} - 18 x^{7} + 28 x^{6} - 36 x^{5} + 36 x^{4} - 40 x^{3} + 64 x^{2} - 64 x + 64$ $2^{9}\cdot 17\cdot 12823427^{2}$ $C_2^6.S_6$ (as 12T293) $[6]$ $3747.00507357$
12.0.148...116.1 $x^{12} - 2 x^{11} + 6 x^{10} - 11 x^{9} + 22 x^{8} - 35 x^{7} + 54 x^{6} - 70 x^{5} + 88 x^{4} - 88 x^{3} + 96 x^{2} - 64 x + 64$ $2^{2}\cdot 17\cdot 127\cdot 13106209^{2}$ $C_2^6.S_6$ (as 12T293) $[2, 4]$ $1826.21668746$
Next   displayed columns for results