Learn more

Refine search


Results (1-50 of at least 1000)

Next   To download results, determine the number of results.
Label Polynomial Discriminant Galois group Class group
3.1.411.1 x3 - x2 + 5x - 2 \( -\,3\cdot 137 \) $S_3$ (as 3T2) trivial
3.1.959.1 x3 - x2 + 6x + 1 \( -\,7\cdot 137 \) $S_3$ (as 3T2) trivial
3.1.1096.1 x3 - x2 + x - 13 \( -\,2^{3}\cdot 137 \) $S_3$ (as 3T2) trivial
3.1.2740.1 x3 - x2 - 10 \( -\,2^{2}\cdot 5\cdot 137 \) $S_3$ (as 3T2) trivial
3.3.3973.1 x3 - 10x - 1 \( 29\cdot 137 \) $S_3$ (as 3T2) trivial
3.1.4795.1 x3 - x2 - 5x + 42 \( -\,5\cdot 7\cdot 137 \) $S_3$ (as 3T2) trivial
3.1.5343.1 x3 - x2 + 6x - 15 \( -\,3\cdot 13\cdot 137 \) $S_3$ (as 3T2) $[4]$
3.1.6028.1 x3 - x2 + 11x + 3 \( -\,2^{2}\cdot 11\cdot 137 \) $S_3$ (as 3T2) trivial
3.1.6987.1 x3 - x2 + x + 48 \( -\,3\cdot 17\cdot 137 \) $S_3$ (as 3T2) $[2]$
3.1.7535.1 x3 - x2 - 16x - 25 \( -\,5\cdot 11\cdot 137 \) $S_3$ (as 3T2) trivial
3.3.8220.1 x3 - x2 - 20x + 12 \( 2^{2}\cdot 3\cdot 5\cdot 137 \) $S_3$ (as 3T2) trivial
3.3.8905.1 x3 - x2 - 20x + 37 \( 5\cdot 13\cdot 137 \) $S_3$ (as 3T2) trivial
3.1.10412.1 x3 - x2 - 9x + 63 \( -\,2^{2}\cdot 19\cdot 137 \) $S_3$ (as 3T2) trivial
3.3.11097.1 x3 - 21x - 31 \( 3^{4}\cdot 137 \) $S_3$ (as 3T2) trivial
3.1.11371.1 x3 - 26x - 55 \( -\,83\cdot 137 \) $S_3$ (as 3T2) trivial
3.1.11919.1 x3 + 3x - 63 \( -\,3\cdot 29\cdot 137 \) $S_3$ (as 3T2) trivial
3.1.12056.1 x3 - x2 - 11x - 41 \( -\,2^{3}\cdot 11\cdot 137 \) $S_3$ (as 3T2) trivial
3.1.13700.1 x3 + 5x - 90 \( -\,2^{2}\cdot 5^{2}\cdot 137 \) $S_3$ (as 3T2) trivial
3.3.14385.1 x3 - 33x - 23 \( 3\cdot 5\cdot 7\cdot 137 \) $S_3$ (as 3T2) trivial
3.1.14796.1 x3 + 6x - 70 \( -\,2^{2}\cdot 3^{3}\cdot 137 \) $S_3$ (as 3T2) $[6]$
3.1.14796.2 x3 + 12x - 44 \( -\,2^{2}\cdot 3^{3}\cdot 137 \) $S_3$ (as 3T2) $[3]$
3.1.14796.3 x3 + 24x - 12 \( -\,2^{2}\cdot 3^{3}\cdot 137 \) $S_3$ (as 3T2) $[3]$
3.1.16303.1 x3 - x2 - 8x + 29 \( -\,7\cdot 17\cdot 137 \) $S_3$ (as 3T2) trivial
3.1.16851.1 x3 - x2 + 3x + 24 \( -\,3\cdot 41\cdot 137 \) $S_3$ (as 3T2) trivial
3.1.17399.1 x3 - x2 - 6x - 125 \( -\,127\cdot 137 \) $S_3$ (as 3T2) $[3]$
3.1.17399.2 x3 - x2 - 24x - 81 \( -\,127\cdot 137 \) $S_3$ (as 3T2) $[3]$
3.1.17399.3 x3 - x2 + 127 \( -\,127\cdot 137 \) $S_3$ (as 3T2) $[3]$
3.1.17399.4 x3 - x2 - 34x + 104 \( -\,127\cdot 137 \) $S_3$ (as 3T2) $[3]$
3.1.18084.1 x3 - x2 - 16x + 112 \( -\,2^{2}\cdot 3\cdot 11\cdot 137 \) $S_3$ (as 3T2) trivial
3.1.18495.1 x3 + 33x - 29 \( -\,3^{3}\cdot 5\cdot 137 \) $S_3$ (as 3T2) trivial
3.1.19043.1 x3 - x2 + 17x - 10 \( -\,137\cdot 139 \) $S_3$ (as 3T2) trivial
3.1.20276.1 x3 - x2 + 4x - 56 \( -\,2^{2}\cdot 37\cdot 137 \) $S_3$ (as 3T2) $[3]$
3.1.20276.2 x3 - x2 + 36x - 18 \( -\,2^{2}\cdot 37\cdot 137 \) $S_3$ (as 3T2) $[15]$
3.1.20276.3 x3 - x2 - 11x - 53 \( -\,2^{2}\cdot 37\cdot 137 \) $S_3$ (as 3T2) $[3]$
3.1.20276.4 x3 + 26x - 20 \( -\,2^{2}\cdot 37\cdot 137 \) $S_3$ (as 3T2) $[3]$
3.3.20276.1 x3 - x2 - 37x + 81 \( 2^{2}\cdot 37\cdot 137 \) $S_3$ (as 3T2) trivial
3.1.20824.1 x3 - x2 + 5x - 57 \( -\,2^{3}\cdot 19\cdot 137 \) $S_3$ (as 3T2) trivial
3.1.22468.1 x3 - x2 + 17x - 57 \( -\,2^{2}\cdot 41\cdot 137 \) $S_3$ (as 3T2) trivial
3.1.23564.1 x3 - x2 - 21x - 41 \( -\,2^{2}\cdot 43\cdot 137 \) $S_3$ (as 3T2) trivial
3.1.24523.1 x3 - x2 - 25x + 66 \( -\,137\cdot 179 \) $S_3$ (as 3T2) $[2]$
3.3.25893.1 x3 - 24x - 33 \( 3^{3}\cdot 7\cdot 137 \) $S_3$ (as 3T2) $[2]$
3.1.26715.1 x3 - x2 + 25x - 90 \( -\,3\cdot 5\cdot 13\cdot 137 \) $S_3$ (as 3T2) $[2]$
3.1.27263.1 x3 - x2 + 20x + 116 \( -\,137\cdot 199 \) $S_3$ (as 3T2) $[2]$
3.1.28907.1 x3 - x2 + 13x - 32 \( -\,137\cdot 211 \) $S_3$ (as 3T2) $[2]$
3.1.29044.1 x3 - x2 + 13x + 59 \( -\,2^{2}\cdot 53\cdot 137 \) $S_3$ (as 3T2) trivial
3.1.29592.1 x3 - 21x - 106 \( -\,2^{3}\cdot 3^{3}\cdot 137 \) $S_3$ (as 3T2) $[2]$
3.3.29592.1 x3 - 51x - 46 \( 2^{3}\cdot 3^{3}\cdot 137 \) $S_3$ (as 3T2) trivial
3.1.32195.1 x3 - x2 + 15x + 22 \( -\,5\cdot 47\cdot 137 \) $S_3$ (as 3T2) $[2]$
3.1.32332.1 x3 - x2 - 9x - 67 \( -\,2^{2}\cdot 59\cdot 137 \) $S_3$ (as 3T2) trivial
3.1.32743.1 x3 - 29x - 92 \( -\,137\cdot 239 \) $S_3$ (as 3T2) trivial
Next   To download results, determine the number of results.