Note: Search results may be incomplete. Given $p$-adic completions contain an unramified field and completions are only searched for ramified primes.
Refine search
| Label | Polynomial | Discriminant | Galois group | Class group |
|---|---|---|---|---|
| 3.1.104.1 | $x^{3} - x - 2$ | $-\,2^{3}\cdot 13$ | $S_3$ (as 3T2) | trivial |
| 3.1.247.1 | $x^{3} + x - 3$ | $-\,13\cdot 19$ | $S_3$ (as 3T2) | trivial |
| 3.1.351.1 | $x^{3} + 3 x - 3$ | $-\,3^{3}\cdot 13$ | $S_3$ (as 3T2) | trivial |
| 3.1.364.1 | $x^{3} + 4 x - 2$ | $-\,2^{2}\cdot 7\cdot 13$ | $S_3$ (as 3T2) | trivial |
| 3.1.728.1 | $x^{3} - x^{2} + 6 x - 2$ | $-\,2^{3}\cdot 7\cdot 13$ | $S_3$ (as 3T2) | trivial |
| 3.1.780.1 | $x^{3} - x^{2} - x - 5$ | $-\,2^{2}\cdot 3\cdot 5\cdot 13$ | $S_3$ (as 3T2) | trivial |
| 3.1.1144.1 | $x^{3} - x^{2} + 6 x + 2$ | $-\,2^{3}\cdot 11\cdot 13$ | $S_3$ (as 3T2) | trivial |
| 3.1.1196.1 | $x^{3} - x^{2} + 5 x - 7$ | $-\,2^{2}\cdot 13\cdot 23$ | $S_3$ (as 3T2) | trivial |
| 3.1.1235.1 | $x^{3} - x^{2} - 5 x + 10$ | $-\,5\cdot 13\cdot 19$ | $S_3$ (as 3T2) | trivial |
| 3.1.1300.1 | $x^{3} - x^{2} - 3 x - 13$ | $-\,2^{2}\cdot 5^{2}\cdot 13$ | $S_3$ (as 3T2) | trivial |
| 3.3.1300.1 | $x^{3} - 10 x - 10$ | $2^{2}\cdot 5^{2}\cdot 13$ | $S_3$ (as 3T2) | trivial |
| 3.1.1547.1 | $x^{3} - x^{2} - x + 8$ | $-\,7\cdot 13\cdot 17$ | $S_3$ (as 3T2) | trivial |
| 3.3.1573.1 | $x^{3} - x^{2} - 7 x + 2$ | $11^{2}\cdot 13$ | $S_3$ (as 3T2) | trivial |
| 3.1.1599.1 | $x^{3} + 3 x - 23$ | $-\,3\cdot 13\cdot 41$ | $S_3$ (as 3T2) | trivial |
| 3.1.1612.1 | $x^{3} - x^{2} - 3 x - 7$ | $-\,2^{2}\cdot 13\cdot 31$ | $S_3$ (as 3T2) | trivial |
| 3.1.1755.1 | $x^{3} + 3 x - 16$ | $-\,3^{3}\cdot 5\cdot 13$ | $S_3$ (as 3T2) | trivial |
| 3.1.1807.1 | $x^{3} - x^{2} + 8 x - 3$ | $-\,13\cdot 139$ | $S_3$ (as 3T2) | trivial |
| 3.3.1937.1 | $x^{3} - x^{2} - 8 x - 1$ | $13\cdot 149$ | $S_3$ (as 3T2) | trivial |
| 3.1.1963.1 | $x^{3} - x^{2} + 5 x + 6$ | $-\,13\cdot 151$ | $S_3$ (as 3T2) | $[4]$ |
| 3.1.2132.1 | $x^{3} - x^{2} - 3 x + 19$ | $-\,2^{2}\cdot 13\cdot 41$ | $S_3$ (as 3T2) | trivial |
| 3.1.2184.1 | $x^{3} - x^{2} + 13 x - 9$ | $-\,2^{3}\cdot 3\cdot 7\cdot 13$ | $S_3$ (as 3T2) | trivial |
| 3.1.2327.1 | $x^{3} - x^{2} + 8 x - 7$ | $-\,13\cdot 179$ | $S_3$ (as 3T2) | $[2]$ |
| 3.1.2444.1 | $x^{3} - 4 x - 10$ | $-\,2^{2}\cdot 13\cdot 47$ | $S_3$ (as 3T2) | trivial |
| 3.1.2548.1 | $x^{3} - x^{2} + 12 x + 8$ | $-\,2^{2}\cdot 7^{2}\cdot 13$ | $S_3$ (as 3T2) | $[3]$ |
| 3.1.2795.1 | $x^{3} - x^{2} + 10 x - 20$ | $-\,5\cdot 13\cdot 43$ | $S_3$ (as 3T2) | trivial |
| 3.1.2808.1 | $x^{3} + 3 x - 10$ | $-\,2^{3}\cdot 3^{3}\cdot 13$ | $S_3$ (as 3T2) | trivial |
| 3.3.2808.1 | $x^{3} - 9 x - 2$ | $2^{3}\cdot 3^{3}\cdot 13$ | $S_3$ (as 3T2) | trivial |
| 3.1.2860.1 | $x^{3} - x^{2} - x + 21$ | $-\,2^{2}\cdot 5\cdot 11\cdot 13$ | $S_3$ (as 3T2) | trivial |
| 3.1.2951.1 | $x^{3} - x^{2} + 6 x - 11$ | $-\,13\cdot 227$ | $S_3$ (as 3T2) | trivial |
| 3.1.2964.1 | $x^{3} - x^{2} + 5 x + 19$ | $-\,2^{2}\cdot 3\cdot 13\cdot 19$ | $S_3$ (as 3T2) | trivial |
| 3.1.3055.1 | $x^{3} - x^{2} + 10 x - 33$ | $-\,5\cdot 13\cdot 47$ | $S_3$ (as 3T2) | trivial |
| 3.1.3107.1 | $x^{3} - x^{2} - 13 x + 26$ | $-\,13\cdot 239$ | $S_3$ (as 3T2) | trivial |
| 3.1.3159.1 | $x^{3} - 9 x - 24$ | $-\,3^{5}\cdot 13$ | $S_3$ (as 3T2) | trivial |
| 3.1.3159.2 | $x^{3} - 9 x - 15$ | $-\,3^{5}\cdot 13$ | $S_3$ (as 3T2) | trivial |
| 3.1.3159.3 | $x^{3} + 9 x - 3$ | $-\,3^{5}\cdot 13$ | $S_3$ (as 3T2) | trivial |
| 3.1.3263.1 | $x^{3} - x - 11$ | $-\,13\cdot 251$ | $S_3$ (as 3T2) | trivial |
| 3.1.3471.1 | $x^{3} - x^{2} + 6 x - 24$ | $-\,3\cdot 13\cdot 89$ | $S_3$ (as 3T2) | trivial |
| 3.1.3523.1 | $x^{3} + 4 x - 11$ | $-\,13\cdot 271$ | $S_3$ (as 3T2) | trivial |
| 3.1.3575.1 | $x^{3} - x^{2} - 8 x - 33$ | $-\,5^{2}\cdot 11\cdot 13$ | $S_3$ (as 3T2) | trivial |
| 3.1.3692.1 | $x^{3} - x^{2} - 3 x + 13$ | $-\,2^{2}\cdot 13\cdot 71$ | $S_3$ (as 3T2) | trivial |
| 3.1.3783.1 | $x^{3} - 9 x - 37$ | $-\,3\cdot 13\cdot 97$ | $S_3$ (as 3T2) | trivial |
| 3.1.3796.1 | $x^{3} - x^{2} + 8 x + 6$ | $-\,2^{2}\cdot 13\cdot 73$ | $S_3$ (as 3T2) | trivial |
| 3.1.3835.1 | $x^{3} - 17 x - 36$ | $-\,5\cdot 13\cdot 59$ | $S_3$ (as 3T2) | trivial |
| 3.1.3991.1 | $x^{3} - x^{2} + 10 x - 7$ | $-\,13\cdot 307$ | $S_3$ (as 3T2) | trivial |
| 3.1.4108.1 | $x^{3} + 10 x - 2$ | $-\,2^{2}\cdot 13\cdot 79$ | $S_3$ (as 3T2) | $[2]$ |
| 3.1.4147.1 | $x^{3} - x^{2} - x - 12$ | $-\,11\cdot 13\cdot 29$ | $S_3$ (as 3T2) | trivial |
| 3.1.4212.1 | $x^{3} + 9 x - 36$ | $-\,2^{2}\cdot 3^{4}\cdot 13$ | $S_3$ (as 3T2) | trivial |
| 3.3.4212.1 | $x^{3} - 12 x - 10$ | $2^{2}\cdot 3^{4}\cdot 13$ | $S_3$ (as 3T2) | $[3]$ |
| 3.1.4472.1 | $x^{3} + 14 x - 16$ | $-\,2^{3}\cdot 13\cdot 43$ | $S_3$ (as 3T2) | $[5]$ |
| 3.1.4511.1 | $x^{3} - x^{2} + 13$ | $-\,13\cdot 347$ | $S_3$ (as 3T2) | trivial |