Learn more

Refine search


Results (1-50 of at least 1000)

Next   To download results, determine the number of results.
Label Polynomial Discriminant Galois group Class group Regulator
12.0.941480149401.1 $x^{12} + x^{10} - 4 x^{9} - 2 x^{8} - 3 x^{7} + 9 x^{6} + 4 x^{5} + 12 x^{4} - 7 x^{3} - 2 x^{2} - x + 1$ $3^{12}\cdot 11^{6}$ $C_6\times S_3$ (as 12T18) trivial $27.6923649209$
12.0.47608675209216.2 $x^{12} + 2 x^{10} + 7 x^{8} + 8 x^{6} + 11 x^{4} - 5 x^{2} + 1$ $2^{12}\cdot 3^{8}\cdot 11^{6}$ $C_6\times S_3$ (as 12T18) trivial $275.14971313898474$
12.0.49613033497104.1 $x^{12} - 6 x^{11} + 17 x^{10} - 29 x^{9} + 44 x^{8} - 81 x^{7} + 132 x^{6} - 119 x^{5} + 21 x^{4} + 48 x^{3} - 6 x^{2} - 44 x + 31$ $2^{4}\cdot 3^{6}\cdot 7^{4}\cdot 11^{6}$ $C_3\times S_3^2$ (as 12T70) trivial $551.861822769$
12.0.60254729561664.1 $x^{12} - x^{11} - 4 x^{10} + 2 x^{9} + 6 x^{8} - 4 x^{7} - 4 x^{6} + 15 x^{5} + 8 x^{4} + 4 x^{3} + 16 x^{2} + 6 x + 3$ $2^{6}\cdot 3^{12}\cdot 11^{6}$ $C_3^4:(C_2\times D_4)$ (as 12T210) trivial $566.690037526$
12.0.117685018675125.1 $x^{12} - 5 x^{9} + 10 x^{6} - 8 x^{3} + 3$ $3^{12}\cdot 5^{3}\cdot 11^{6}$ $S_3^2:S_3^2$ (as 12T217) trivial $290.213015133$
12.0.207247580041216.1 $x^{12} - 2 x^{11} - 3 x^{10} + 14 x^{9} - 11 x^{8} + 22 x^{7} - 14 x^{6} - 186 x^{5} + 405 x^{4} + 216 x^{3} - 648 x^{2} - 486 x + 729$ $2^{12}\cdot 11^{6}\cdot 13^{4}$ $C_6\times S_3$ (as 12T18) trivial $135.08149305887892$
12.0.241018918246656.1 $x^{12} - x^{11} + 3 x^{10} + 4 x^{9} - 5 x^{8} + 13 x^{7} + 14 x^{6} - 29 x^{5} + 61 x^{4} - 38 x^{3} + 17 x^{2} - 5 x + 1$ $2^{8}\cdot 3^{12}\cdot 11^{6}$ $C_6\times S_3$ (as 12T18) $[3]$ $279.93900691434754$
12.0.241018918246656.2 $x^{12} - x^{11} + 3 x^{10} - 4 x^{9} + x^{8} - 9 x^{7} + 24 x^{6} - 51 x^{5} + 99 x^{4} - 144 x^{3} + 171 x^{2} - 135 x + 81$ $2^{8}\cdot 3^{12}\cdot 11^{6}$ $C_6\times S_3$ (as 12T18) $[3]$ $703.4091047011902$
12.0.686339028913329.1 $x^{12} - 8 x^{9} + 37 x^{6} - 216 x^{3} + 729$ $3^{18}\cdot 11^{6}$ $C_6\times C_2$ (as 12T2) $[3]$ $1042.22134059$
12.0.761738803347456.1 $x^{12} + 5 x^{10} + 18 x^{8} + 41 x^{6} + 50 x^{4} + 9 x^{2} + 1$ $2^{16}\cdot 3^{8}\cdot 11^{6}$ $C_6\times S_3$ (as 12T18) $[3]$ $539.6677444334456$
12.0.761738803347456.2 $x^{12} + 5 x^{10} + 22 x^{8} + 45 x^{6} + 90 x^{4} + 117 x^{2} + 81$ $2^{16}\cdot 3^{8}\cdot 11^{6}$ $C_6\times S_3$ (as 12T18) $[3]$ $179.6000104848821$
12.0.793808535953664.1 $x^{12} + 17 x^{10} - 4 x^{9} + 117 x^{8} + 437 x^{6} + 150 x^{5} + 832 x^{4} + 606 x^{3} + 1236 x^{2} + 808 x + 388$ $2^{8}\cdot 3^{6}\cdot 7^{4}\cdot 11^{6}$ $C_6\times S_3$ (as 12T18) $[3]$ $360.61329541369565$
12.0.1190216880230400.1 $x^{12} - 8 x^{9} + 19 x^{6} - 12 x^{3} + 5$ $2^{12}\cdot 3^{8}\cdot 5^{2}\cdot 11^{6}$ $C_3:S_3^3$ (as 12T168) trivial $1386.41946771$
12.0.1192697790198849.1 $x^{12} - 2 x^{11} + 4 x^{10} + 4 x^{9} - 10 x^{8} + 20 x^{7} + 6 x^{6} - 22 x^{5} + 28 x^{4} - 4 x^{3} - 14 x^{2} - 20 x + 25$ $3^{6}\cdot 11^{6}\cdot 31^{4}$ $C_6\times S_3$ (as 12T18) trivial $3471.1759519767847$
12.0.3046955213389824.2 $x^{12} - 4 x^{10} + 28 x^{8} - 64 x^{6} + 176 x^{4} + 160 x^{2} + 64$ $2^{18}\cdot 3^{8}\cdot 11^{6}$ $C_6\times S_3$ (as 12T18) trivial $475.6052021158521$
12.0.4843509679427584.1 $x^{12} - 4 x^{11} + 7 x^{10} - 10 x^{9} + 19 x^{8} - 34 x^{7} + 50 x^{6} - 68 x^{5} + 76 x^{4} - 80 x^{3} + 112 x^{2} - 128 x + 64$ $2^{12}\cdot 11^{6}\cdot 19^{2}\cdot 43^{2}$ $S_3^2:C_2^2$ (as 12T77) trivial $2923.79118944$
12.0.7445055839159169.1 $x^{12} - x^{11} - 3 x^{10} + 2 x^{9} - 16 x^{8} + 42 x^{7} + 31 x^{6} - 126 x^{5} + 545 x^{4} + 310 x^{3} - 2043 x^{2} - 284 x + 5041$ $3^{6}\cdot 7^{8}\cdot 11^{6}$ $C_6\times C_2$ (as 12T2) trivial $1236.8356247$
12.0.9442717865627904.1 $x^{12} - 2 x^{11} + 25 x^{10} - 38 x^{9} + 218 x^{8} - 262 x^{7} + 699 x^{6} - 592 x^{5} + 550 x^{4} - 292 x^{3} - 191 x^{2} - 80 x + 163$ $2^{8}\cdot 3^{6}\cdot 11^{6}\cdot 13^{4}$ $C_6\times S_3$ (as 12T18) $[3]$ $1148.3700791252281$
12.0.12700936575258624.2 $x^{12} + 15 x^{10} - 4 x^{9} + 93 x^{8} - 8 x^{7} + 321 x^{6} + 174 x^{5} + 655 x^{4} + 866 x^{3} + 889 x^{2} + 1078 x + 829$ $2^{12}\cdot 3^{6}\cdot 7^{4}\cdot 11^{6}$ $C_6\times S_3$ (as 12T18) $[2]$ $1428.4824339704398$
12.0.13263845122637824.1 $x^{12} - 4 x^{11} + 2 x^{10} - 2 x^{9} + 55 x^{8} - 184 x^{7} + 225 x^{6} + 42 x^{5} - 156 x^{4} - 54 x^{3} + 189 x^{2} - 106 x + 23$ $2^{18}\cdot 11^{6}\cdot 13^{4}$ $C_6\times S_3$ (as 12T18) trivial $1256.547316830405$
12.0.14710627334390625.1 $x^{12} - x^{11} - 4 x^{10} + 8 x^{9} + 67 x^{8} - 283 x^{7} + 464 x^{6} - 241 x^{5} - 182 x^{4} - 136 x^{3} + 1173 x^{2} - 1502 x + 661$ $3^{12}\cdot 5^{6}\cdot 11^{6}$ $C_6\times S_3$ (as 12T18) $[2, 2]$ $516.3361259008361$
12.4.18181363371417796.1 $x^{12} - 6 x^{10} - 6 x^{9} + 3 x^{8} + 6 x^{7} + 10 x^{6} + 21 x^{5} + 19 x^{4} - x^{3} - 12 x^{2} - 8 x - 2$ $2^{2}\cdot 11^{6}\cdot 37^{6}$ $C_3^3:(S_3\times A_4)$ (as 12T234) trivial $9991.79997423$
12.0.20344444548406209.1 $x^{12} + 27 x^{10} - 2 x^{9} + 237 x^{8} - 6 x^{7} + 826 x^{6} - 93 x^{5} + 1089 x^{4} - 237 x^{3} + 462 x^{2} + 54 x + 111$ $3^{14}\cdot 7^{4}\cdot 11^{6}$ $C_6\times S_3$ (as 12T18) trivial $6885.226811144924$
12.0.20530918775816449.1 $x^{12} - x^{11} + 7 x^{10} - 21 x^{9} - 4 x^{8} - 12 x^{7} + 52 x^{6} + 53 x^{5} - 14 x^{4} + 73 x^{3} + 153 x^{2} - 92 x + 48$ $7^{4}\cdot 11^{6}\cdot 13^{6}$ $C_6\times S_3$ (as 12T18) $[5]$ $3568.10151790331$
12.0.34624945047750849.1 $x^{12} - 2 x^{11} - 2 x^{10} + 9 x^{9} - 7 x^{8} - 11 x^{7} + 31 x^{6} - 22 x^{5} - 28 x^{4} + 72 x^{3} - 32 x^{2} - 64 x + 64$ $3^{2}\cdot 11^{6}\cdot 46601^{2}$ $S_6\times C_2$ (as 12T219) $[3]$ $4958.67944197$
12.0.41831205373382656.1 $x^{12} - 7 x^{10} + 68 x^{8} - 357 x^{6} + 1385 x^{4} - 4102 x^{2} + 5041$ $2^{12}\cdot 7^{8}\cdot 11^{6}$ $C_6\times C_2$ (as 12T2) trivial $1918.88179375$
12.0.48450228024515625.1 $x^{12} - 2 x^{11} + 7 x^{10} - 8 x^{9} + 22 x^{8} - 23 x^{7} + 72 x^{6} - 61 x^{5} + 91 x^{4} - 230 x^{3} + 20 x^{2} - 96 x + 256$ $3^{6}\cdot 5^{6}\cdot 7^{4}\cdot 11^{6}$ $C_6\times S_3$ (as 12T18) $[4]$ $6771.143590970604$
12.0.48450228024515625.2 $x^{12} - 3 x^{11} + 14 x^{10} - 44 x^{9} + 106 x^{8} - 256 x^{7} + 435 x^{6} - 671 x^{5} + 835 x^{4} - 731 x^{3} + 661 x^{2} - 215 x + 124$ $3^{6}\cdot 5^{6}\cdot 7^{4}\cdot 11^{6}$ $C_6\times S_3$ (as 12T18) $[4]$ $23397.558673649306$
12.0.55593461341979649.1 $x^{12} - 24 x^{9} + 273 x^{6} - 1944 x^{3} + 6561$ $3^{22}\cdot 11^{6}$ $C_6\times S_3$ (as 12T18) trivial $7882.726889594513$
12.0.56103022943828289.1 $x^{12} - 5 x^{10} - 19 x^{9} + 25 x^{8} + 83 x^{7} + 239 x^{6} + 323 x^{5} + 381 x^{4} + 244 x^{3} + 261 x^{2} + 18 x + 36$ $3^{8}\cdot 11^{6}\cdot 13^{6}$ $C_6\times S_3$ (as 12T18) $[5]$ $1761.7045259168267$
12.0.56103022943828289.2 $x^{12} - 7 x^{10} - 20 x^{9} + 102 x^{8} + 79 x^{7} - 143 x^{6} + 72 x^{5} + 828 x^{4} + 783 x^{3} + 1458 x^{2} - 243 x + 729$ $3^{8}\cdot 11^{6}\cdot 13^{6}$ $C_6\times S_3$ (as 12T18) $[5]$ $549.7399928512797$
12.0.85792378614166125.1 $x^{12} - 8 x^{9} + 30 x^{6} - 45 x^{3} + 27$ $3^{18}\cdot 5^{3}\cdot 11^{6}$ $S_3^3:C_2$ (as 12T156) trivial $5611.8016539131395$
12.0.102669583276376809.1 $x^{12} - 4 x^{11} + 12 x^{10} - 29 x^{9} + 26 x^{8} + 11 x^{7} - 46 x^{6} + 59 x^{5} - 80 x^{4} + 91 x^{3} + 172 x^{2} - 233 x + 67$ $7^{4}\cdot 11^{6}\cdot 17^{6}$ $C_6\times S_3$ (as 12T18) trivial $2105.973294326649$
12.0.110764198096878249.1 $x^{12} - x^{11} + 5 x^{10} - 19 x^{9} - 32 x^{8} - 130 x^{7} + 509 x^{6} + 398 x^{5} - 164 x^{4} - 3979 x^{3} + 3261 x^{2} + 2881 x + 1255$ $3^{12}\cdot 7^{6}\cdot 11^{6}$ $C_6\times S_3$ (as 12T18) $[6]$ $1886.4693355567663$
12.0.151083485850046464.1 $x^{12} + 47 x^{10} + 965 x^{8} - 4 x^{7} + 10793 x^{6} + 302 x^{5} + 69755 x^{4} + 1270 x^{3} + 259581 x^{2} - 12326 x + 440929$ $2^{12}\cdot 3^{6}\cdot 11^{6}\cdot 13^{4}$ $C_6\times S_3$ (as 12T18) $[2]$ $4844.291589846243$
12.0.175702791401812224.1 $x^{12} - 3 x^{11} - 3 x^{10} - 2 x^{9} + 69 x^{8} - 165 x^{7} + 88 x^{6} + 285 x^{5} - 561 x^{4} + 1614 x^{3} + 153 x^{2} - 2061 x + 1389$ $2^{8}\cdot 3^{18}\cdot 11^{6}$ $C_6\times S_3$ (as 12T18) $[3]$ $7348.40421963397$
12.0.182301243494445009.1 $x^{12} + 17 x^{10} - 8 x^{9} + 117 x^{8} + 455 x^{6} + 300 x^{5} + 679 x^{4} + 1188 x^{3} + 2163 x^{2} + 1820 x + 592$ $3^{6}\cdot 11^{6}\cdot 109^{4}$ $C_6\times S_3$ (as 12T18) trivial $40010.205506869315$
12.0.203214985204137984.1 $x^{12} - 4 x^{11} - 25 x^{10} + 88 x^{9} + 332 x^{8} - 850 x^{7} - 2003 x^{6} + 4374 x^{5} + 702 x^{4} - 23926 x^{3} + 34275 x^{2} + 169592 x + 133681$ $2^{16}\cdot 3^{6}\cdot 7^{4}\cdot 11^{6}$ $C_6\times S_3$ (as 12T18) $[2]$ $8595.921448815217$
12.0.242006530923377649.1 $x^{12} - 6 x^{11} + 33 x^{10} - 100 x^{9} + 285 x^{8} - 636 x^{7} + 1387 x^{6} - 2706 x^{5} + 3390 x^{4} - 4020 x^{3} + 7803 x^{2} - 8631 x + 3303$ $3^{14}\cdot 11^{6}\cdot 13^{4}$ $C_6\times S_3$ (as 12T18) trivial $24962.64086653436$
12.0.244224727678506289.1 $x^{12} - 4 x^{11} + 13 x^{10} - 28 x^{9} + 105 x^{8} - 206 x^{7} + 552 x^{6} - 775 x^{5} + 2083 x^{4} - 2017 x^{3} + 5200 x^{2} - 2482 x + 7151$ $11^{6}\cdot 13^{10}$ $C_6\times C_2$ (as 12T2) $[35]$ $120.784031363$
12.0.246803372284575744.1 $x^{12} + 6 x^{10} + 36 x^{8} - 96 x^{6} + 864 x^{4} - 4320 x^{2} + 5184$ $2^{18}\cdot 3^{12}\cdot 11^{6}$ $C_6\times S_3$ (as 12T18) $[4]$ $3656.1637164803647$
12.0.272225149504000000.1 $x^{12} - 2 x^{11} + 21 x^{10} - 38 x^{9} + 180 x^{8} - 230 x^{7} + 521 x^{6} - 50 x^{5} - 167 x^{4} + 1004 x^{3} - 112 x^{2} - 348 x + 621$ $2^{12}\cdot 5^{6}\cdot 7^{4}\cdot 11^{6}$ $C_6\times S_3$ (as 12T18) $[2, 2]$ $9711.957781460018$
12.0.272225149504000000.2 $x^{12} - 4 x^{11} - 7 x^{10} + 34 x^{9} + 51 x^{8} - 232 x^{7} - 51 x^{6} + 842 x^{5} - 359 x^{4} - 1424 x^{3} + 403 x^{2} + 974 x + 661$ $2^{12}\cdot 5^{6}\cdot 7^{4}\cdot 11^{6}$ $C_6\times S_3$ (as 12T18) $[4]$ $1356.9172449963498$
12.0.280556074917246249.1 $x^{12} - 6 x^{11} - 11 x^{10} + 106 x^{9} + 43 x^{8} - 856 x^{7} + 276 x^{6} + 3099 x^{5} - 1877 x^{4} - 5345 x^{3} + 3136 x^{2} + 3536 x + 3149$ $3^{8}\cdot 11^{6}\cdot 17^{6}$ $C_6\times S_3$ (as 12T18) trivial $4509.194128719137$
12.4.290901813942684736.1 $x^{12} - 4 x^{11} + 2 x^{10} + 17 x^{9} - 32 x^{8} - 8 x^{7} - 16 x^{6} + 130 x^{5} + 37 x^{4} - 236 x^{3} + 38 x^{2} + 101 x + 34$ $2^{6}\cdot 11^{6}\cdot 37^{6}$ $S_3\wr C_3$ (as 12T176) trivial $33524.2402528$
12.0.305330634290905344.1 $x^{12} - x^{11} - 17 x^{10} + 8 x^{9} + 53 x^{8} - 95 x^{7} + 294 x^{6} + 1063 x^{5} - 383 x^{4} + 1288 x^{3} + 3355 x^{2} - 5023 x + 4621$ $2^{8}\cdot 3^{6}\cdot 11^{6}\cdot 31^{4}$ $C_6\times S_3$ (as 12T18) $[3]$ $5937.274174913923$
12.0.312360518047666176.1 $x^{12} - 6 x^{11} + 45 x^{10} - 170 x^{9} + 618 x^{8} - 1518 x^{7} + 3159 x^{6} - 4812 x^{5} + 5595 x^{4} - 4634 x^{3} + 2436 x^{2} - 714 x + 89$ $2^{12}\cdot 3^{16}\cdot 11^{6}$ $C_6\times C_2$ (as 12T2) $[3]$ $3591.73202002$
12.0.341379678168027136.1 $x^{12} + 8 x^{10} + 15 x^{8} + 4 x^{6} - 20 x^{4} - 4 x^{2} + 16$ $2^{12}\cdot 11^{6}\cdot 19^{6}$ $A_4^2:C_2^3$ (as 12T195) $[2]$ $11286.125520494834$
12.12.364...281.1 $x^{12} - x^{11} - 33 x^{10} + 25 x^{9} + 404 x^{8} - 204 x^{7} - 2234 x^{6} + 519 x^{5} + 5423 x^{4} + 472 x^{3} - 4716 x^{2} - 1966 x - 41$ $3^{6}\cdot 7^{10}\cdot 11^{6}$ $C_6\times C_2$ (as 12T2) trivial $54432.0221573$
12.0.364807736118799281.1 $x^{12} - x^{11} + 21 x^{10} - 20 x^{9} + 314 x^{8} - 294 x^{7} + 2248 x^{6} - 2037 x^{5} + 11696 x^{4} - 7916 x^{3} + 20034 x^{2} + 8798 x + 6889$ $3^{6}\cdot 7^{10}\cdot 11^{6}$ $C_6\times C_2$ (as 12T2) $[18]$ $1413.94987412$
Next   To download results, determine the number of results.