Learn more

Refine search


Results (1-50 of at least 1000)

Next   To download results, determine the number of results.
Label Polynomial Discriminant Galois group Class group
2.0.103.1 x2 - x + 26 \( -\,103 \) $C_2$ (as 2T1) $[5]$
2.2.309.1 x2 - x - 77 \( 3\cdot 103 \) $C_2$ (as 2T1) trivial
2.0.824.1 x2 + 206 \( -\,2^{3}\cdot 103 \) $C_2$ (as 2T1) $[20]$
2.2.1133.1 x2 - x - 283 \( 11\cdot 103 \) $C_2$ (as 2T1) trivial
2.0.1339.1 x2 - x + 335 \( -\,13\cdot 103 \) $C_2$ (as 2T1) $[8]$
2.0.1751.1 x2 - x + 438 \( -\,17\cdot 103 \) $C_2$ (as 2T1) $[48]$
2.2.2060.1 x2 - 515 \( 2^{2}\cdot 5\cdot 103 \) $C_2$ (as 2T1) $[2]$
2.2.2472.1 x2 - 618 \( 2^{3}\cdot 3\cdot 103 \) $C_2$ (as 2T1) $[2]$
2.0.2884.1 x2 + 721 \( -\,2^{2}\cdot 7\cdot 103 \) $C_2$ (as 2T1) $[2, 8]$
2.0.2987.1 x2 - x + 747 \( -\,29\cdot 103 \) $C_2$ (as 2T1) $[20]$
2.2.3193.1 x2 - x - 798 \( 31\cdot 103 \) $C_2$ (as 2T1) trivial
2.0.3399.1 x2 - x + 850 \( -\,3\cdot 11\cdot 103 \) $C_2$ (as 2T1) $[2, 20]$
2.2.3605.1 x2 - x - 901 \( 5\cdot 7\cdot 103 \) $C_2$ (as 2T1) $[2]$
2.2.4017.1 x2 - x - 1004 \( 3\cdot 13\cdot 103 \) $C_2$ (as 2T1) $[4]$
2.2.4120.1 x2 - 1030 \( 2^{3}\cdot 5\cdot 103 \) $C_2$ (as 2T1) $[2]$
2.0.4223.1 x2 - x + 1056 \( -\,41\cdot 103 \) $C_2$ (as 2T1) $[44]$
2.2.4429.1 x2 - x - 1107 \( 43\cdot 103 \) $C_2$ (as 2T1) trivial
2.2.4841.1 x2 - x - 1210 \( 47\cdot 103 \) $C_2$ (as 2T1) $[3]$
2.2.5253.1 x2 - x - 1313 \( 3\cdot 17\cdot 103 \) $C_2$ (as 2T1) $[2]$
2.0.5768.1 x2 + 1442 \( -\,2^{3}\cdot 7\cdot 103 \) $C_2$ (as 2T1) $[2, 12]$
2.0.6180.1 x2 + 1545 \( -\,2^{2}\cdot 3\cdot 5\cdot 103 \) $C_2$ (as 2T1) $[2, 2, 6]$
2.0.6283.1 x2 - x + 1571 \( -\,61\cdot 103 \) $C_2$ (as 2T1) $[12]$
2.2.6901.1 x2 - x - 1725 \( 67\cdot 103 \) $C_2$ (as 2T1) $[3]$
2.2.7313.1 x2 - x - 1828 \( 71\cdot 103 \) $C_2$ (as 2T1) trivial
2.0.7828.1 x2 + 1957 \( -\,2^{2}\cdot 19\cdot 103 \) $C_2$ (as 2T1) $[2, 8]$
2.2.8652.1 x2 - 2163 \( 2^{2}\cdot 3\cdot 7\cdot 103 \) $C_2$ (as 2T1) $[2, 2]$
2.2.8961.1 x2 - x - 2240 \( 3\cdot 29\cdot 103 \) $C_2$ (as 2T1) $[2]$
2.2.9064.1 x2 - 2266 \( 2^{3}\cdot 11\cdot 103 \) $C_2$ (as 2T1) $[2]$
2.0.9476.1 x2 + 2369 \( -\,2^{2}\cdot 23\cdot 103 \) $C_2$ (as 2T1) $[2, 36]$
2.0.9579.1 x2 - x + 2395 \( -\,3\cdot 31\cdot 103 \) $C_2$ (as 2T1) $[2, 16]$
2.2.9785.1 x2 - x - 2446 \( 5\cdot 19\cdot 103 \) $C_2$ (as 2T1) $[2]$
2.0.9991.1 x2 - x + 2498 \( -\,97\cdot 103 \) $C_2$ (as 2T1) $[32]$
2.0.10712.1 x2 + 2678 \( -\,2^{3}\cdot 13\cdot 103 \) $C_2$ (as 2T1) $[2, 20]$
2.0.10815.1 x2 - x + 2704 \( -\,3\cdot 5\cdot 7\cdot 103 \) $C_2$ (as 2T1) $[2, 2, 20]$
2.2.11845.1 x2 - x - 2961 \( 5\cdot 23\cdot 103 \) $C_2$ (as 2T1) $[2]$
2.0.12360.1 x2 + 3090 \( -\,2^{3}\cdot 3\cdot 5\cdot 103 \) $C_2$ (as 2T1) $[2, 2, 14]$
2.2.12669.1 x2 - x - 3167 \( 3\cdot 41\cdot 103 \) $C_2$ (as 2T1) $[2]$
2.2.13081.1 x2 - x - 3270 \( 103\cdot 127 \) $C_2$ (as 2T1) trivial
2.0.13287.1 x2 - x + 3322 \( -\,3\cdot 43\cdot 103 \) $C_2$ (as 2T1) $[2, 28]$
2.0.13699.1 x2 - x + 3425 \( -\,7\cdot 19\cdot 103 \) $C_2$ (as 2T1) $[2, 12]$
2.0.14008.1 x2 + 3502 \( -\,2^{3}\cdot 17\cdot 103 \) $C_2$ (as 2T1) $[4, 4]$
2.0.14111.1 x2 - x + 3528 \( -\,103\cdot 137 \) $C_2$ (as 2T1) $[152]$
2.0.14523.1 x2 - x + 3631 \( -\,3\cdot 47\cdot 103 \) $C_2$ (as 2T1) $[2, 12]$
2.2.14729.1 x2 - x - 3682 \( 11\cdot 13\cdot 103 \) $C_2$ (as 2T1) $[2]$
2.2.15244.1 x2 - 3811 \( 2^{2}\cdot 37\cdot 103 \) $C_2$ (as 2T1) $[14]$
2.0.15347.1 x2 - x + 3837 \( -\,103\cdot 149 \) $C_2$ (as 2T1) $[40]$
2.2.15553.1 x2 - x - 3888 \( 103\cdot 151 \) $C_2$ (as 2T1) trivial
2.0.15656.1 x2 + 3914 \( -\,2^{3}\cdot 19\cdot 103 \) $C_2$ (as 2T1) $[2, 32]$
2.0.16583.1 x2 - x + 4146 \( -\,7\cdot 23\cdot 103 \) $C_2$ (as 2T1) $[2, 64]$
2.2.17304.1 x2 - 4326 \( 2^{3}\cdot 3\cdot 7\cdot 103 \) $C_2$ (as 2T1) $[2, 2]$
Next   To download results, determine the number of results.